

Парадоксальная психоневрология: необычное течение обычных заболеваний
https://doi.org/10.33667/2078-5631-2025-2-41-47
Аннотация
В обзорной статье рассматриваются необычные с точки зрения традиционной психоневрологии ситуации, когда поражение головного мозга приводит не к нарастанию дефекта, а к его уменьшению или исчезновению. Подобные необычные и неожиданные эффекты церебральных поражений отмечаются при различных по генезу заболеваниях. Особое внимание уделено инсульту и черепно-мозговой травме. Приводятся результаты работ, в которых показано уменьшение выраженности экстрапирамидных нарушений, болевых синдромов, обсессивно-компульсивных нарушений, различного рода аддикций у пациентов после перенесенного инсульта. Также рассматриваются случаи регресса эпилептических приступов и нарушений поведения после черепно-мозговой травмы. Подчеркивается то, что в основе подобных необычных эффектов лежит реорганизация церебральных связей с активацией тормозящих механизмов, в норме клинически себя не проявляющих, либо с определенными особенностями протекающих в патологических условиях процессов нейропластичности
Об авторе
И. В. ДамулинРоссия
Дамулин Игорь Владимирович, д. м. н., проф., ведущий научный сотрудник отделения экзогенно-органических расстройств и эпилепсии; проф. кафедры неврологии Факультета дополнительного профессионального образования Института непрерывного образования и профессионального развития
Москва
Список литературы
1. Jha A., Brown P. Paradoxes in Parkinson's disease and other movement disorders. In: The Paradoxical Brain. Ch.10. Ed. by N. Kapur. Cambridge: Cambridge University Press, 2011. P. 189–203. https://doi.org/10.1017/cbo9780511978098.012
2. Kapur N. Paradoxical functional facilitation in brain-behaviour research: A critical review. Brain. 1996; 119 (5): 1775–1790. https://doi.org/10.1093/brain/119.5.1775
3. Kapur N., Pascual-Leone A., Manly T., Cole J. The paradoxical nature of nature. –In: The Paradoxical Brain. Ch.1. Ed. by N. Kapur. Cambridge: Cambridge University Press, 2011. P. 1–13. https://doi.org/10.1017/cbo9780511978098.003
4. Kapur N., Cole J., Manly T., Viskontas I., Ninteman A., Hasher L., Pascual-Leone A. Positive clinical neuroscience. The Neuroscientist. 2013; 19 (4): 354–369. https://doi.org/10.1177/1073858412470976
5. Viskontas I. V., Miller B. L. Paradoxical creativity and adjustment in neurological conditions. –In: The Paradoxical Brain. Ch.12. Ed. by N. Kapur. Cambridge: Cambridge University Press, 2011. P. 221–233. https://doi.org/10.1017/cbo9780511978098.014
6. Pascual-Leone A., Obretenova S., Merabet L. B. Paradoxical effects of sensory loss. –In: The Paradoxical Brain. Ch.2. Ed. by N. Kapur. Cambridge: Cambridge University Press, 2011. P. 14–39. https://doi.org/10.1017/cbo9780511978098.004
7. Pollak T. A., Mulvenna C. M., Lythgoe M. F. De novo artistic behaviour following brain injury. –In: Neurological Disorders in Famous Artists. Part 2. Frontiers of Neurology and Neuroscience. Vol. 22. Ed. by J. Bogousslavsky, M. G. Hennerici. Basel: S. Karger AG, 2007. P. 75–88. https://doi.org/10.1159/000102873
8. Midorikawa A., Kawamura M. The emergence of artistic ability following traumatic brain injury. Neurocase. 2015; 21 (1): 90–94. https://doi.org/10.1080/13554794.2013.873058
9. Schott G. D. Pictures as a neurological tool: lessons from enhanced and emergent artistry in brain disease. Brain. 2012; 135 (6): 1947–1963. https://doi.org/10.1093/brain/awr314
10. Yerdelen D., Yetkinel S., Dogan A. Tremor onset with acute frontal infarct and disappear ance with the second stroke. Neurosciences Journal. 2015; 20 (2): 164–166. https://doi.org/10.17712/nsj.2015.2.20140588
11. Kapur N. Paradoxical functional facilitation and recovery in neurological and psychiatric conditions. In: The Paradoxical Brain. Ch.3. Ed. by N. Kapur. – Cambridge: Cambridge University Press, 2011. P. 40–73. https://doi.org/10.1017/cbo9780511978098.005
12. Muroi A., Hirayama K., Tanno Y., Shimizu S., Watanabe T., Yamamoto T. Cessation of stuttering after bilateral thalamic infarction. Neurology. 1999; 53 (4): 890. https://doi.org/10.1212/wnl.53.4.890
13. Xuan Y., Meng C., Yang Y., Zhu C., Wang L., Yan Q., Lin C., Yu C. Resting-state brain activity in adult males who stutter. PLoS ONE. 2012; 7 (1): e30570. https://doi:10.1371/journal.pone.0030570
14. Cohen D. A., Kurowski K., Steven M. S., Blumstein S. E., Pascual-Leone A. Paradoxical facilitation: the resolution of foreign accent syndrome after cerebellar stroke. Neurology. 2009; 73 (7): 566–567. https://doi.org/10.1212/wnl.0b013e3181b2a4d8
15. Priftis K., Algeri L., Barachetti L., Magnani S., Gobbo M., De Pellegrin S. Acquired neurogenic foreign accent syndrome after right-hemisphere lesion with left cerebellar diaschisis: A longitudinal study. Cortex. 2020; 130: 220–230. https://doi.org/10.1016/j.cortex.2020.05.019
16. Erbay L. G., Erbay M. F., Kamıslı S., Demirbay S., Unal S. Refractory obsessive–compulsive disorder with symptoms regressing after thalamic infarction: A case report. Neurology India. 2022; 70 (1): 399–401. https://doi.org/10.4103/0028-3886.338703
17. Naqvi N. H., Bechara A. The hidden island of addiction: the insula. Trends in Neurosciences. 2009; 32 (1): 56–67. https://doi.org/10.1016/j.tins.2008.09.009
18. Chen Y., Chaudhary S., Wang W., Li C.-S.R. Gray matter volumes of the insula and anterior cingulate cortex and their dysfunctional roles in cigarette smoking. Addiction Neuroscience. 2022; 1: 100003. https://doi.org/10.1016/j.addicn.2021.100003
19. Zanchi D., Brody A. L., Montandon M.-L., Kopel R., Emmert K., Preti M. G., Van De Ville D., Haller S. Cigarette smoking leads to persistent and dose-dependent alterations of brain activity and connectivity in anterior insula and anterior cingulate. Addiction Biology. 2015; 20 (6): 1033–1041. https://doi.org/10.1111/adb.12292
20. Naqvi N. H., Rudrauf D., Damasio H., Bechara A. Damage to the insula disrupts addiction to cigarette smoking. Science. 2007; 315 (5811): 531–534. https://doi.org/10.1126/science.1135926
21. Brownlee C. Addiction subtraction: Brain damage curbs cigarette urge. Science News. 2007; 171(4): 51. https://doi.org/10.1002/scin.2007.5591710402
22. McKhann G. M. Damage to the insula disrupts addiction to cigarette smoking. Neurosurgery. 2007; 60 (4): N 8. https://doi.org/10.1227/01.neu.0000309481.58232.a8
23. Vorel S. R., Bisaga A., McKhann G., Kleber H. D. Insula damage and quitting smoking. Science. 2007; 317 (5836): 318–319. https://doi.org/10.1126/science.317.5836.318c
24. Abdolahi A., Williams G. C., Benesch C. G., Wang H. Z., Spitzer E. M., Scott B. E., Block R. C., van Wijngaarden E. Damage to the insula leads to decreased nicotine withdrawal during abstinence. Addiction. 2015; 110 (12): 1994–2003. https://doi.org/10.1111/add.13061
25. Gaznick N., Tranel D., McNutt A., Bechara A. Basal ganglia plus insula damage yields stronger disruption of smoking addiction than basal ganglia damage alone. Nicotine & Tobacco Research. 2014; 16 (4): 445–453. https://doi.org/10.1093/ntr/ntt172
26. Jing C., Jing C., Zheng L., Hong G., Zheng J., Yu L., Song N., Zhang T., Ma Q., Fang J. Disruption of cigarette smoking addiction after dorsal striatum damage. Frontiers in Behavioral Neuroscience. 2021; 15: 646337. https://doi.org/10.3389/fnbeh.2021.646337
27. Najeeb F., Silver B., Khan M. Cessation of smoking and alcohol addiction following thalamic hemorrhage. The Neurologist. 2016; 21 (6): 91–92. https://doi.org/10.1097/nrl.0000000000000091
28. Jarraya B., Brugieres P., Tani N., Hodel J., Grandjacques B., Fenelon G., Decq P., Palfi S. Disruption of cigarette smoking addiction after posterior cingulate damage. Journal of Neurosurgery. 2010; 113 (6): 1219–1221. https://doi.org/10.3171/2010.6.jns10346
29. Moussawi K., Kalivas P. W., Lee J. W. Abstinence from drug dependence after bilateral globus pallidus hypoxic-ischemic injury. Biological Psychiatry. 2016; 80 (9): e79–e80. https://doi.org/10.1016/j.biopsych.2016.04.005
30. Braddom R. L. Perils and pointers in the evaluation and management of back pain. Seminars in Neurology. 1998; 18 (2): 197–210. https://doi.org/10.1055/s-2008-1040873
31. Hall H. Back Pain. -In: Neurological Therapeutics Principles and Practice. Editor-in-chief J. H. Noseworthy. Second edition. Vol. I. Ch. 21. Oxon: Informa Healthcare, 2006. P. 240–256.
32. Jayson M. I. General aspects of back pain: An overview. -In: Back pain, painful syndromes and muscle spasms (Current concepts and recent advances). Ed. by M. I. Jayson et al. Carnforth etc.: The Parthenon Publishing Group, 1990. P. 11–15.
33. Pijnenburg M., Brumagne S., Caeyenberghs K., Janssens L., Goossens N., Marinazzo D., Swinnen S. P., Claeys K., Siugzdaite R. Resting-state functional connectivity of the sensorimotor network in individuals with nonspecific low back pain and the association with the sit-to-stand-to-sit task. Brain Connectivity. 2015; 5 (5): 303–311. https://doi.org/10.1089/brain.2014.0309
34. Pijnenburg M., Hosseini S. M.H., Brumagne S., Janssens L., Goossens N., Caeyenberghs K. Structural brain connectivity and the sit-to-stand-to-sit performance in individuals with nonspecific low back pain: a diffusion magnetic resonance imaging-based network analysis. Brain Connectivity. 2016; 6 (10): 795–803. https://doi.org/10.1089/brain.2015.0401
35. Shanthanna H. A case report of a thalamic stroke associated with sudden disappearance of severe chronic low back pain. Scandinavian Journal of Pain. 2018; 18 (1): 121–124. https://doi.org/10.1515/sjpain-2017–0169
36. Asano N., Maeshima S., Okamoto S., Okazaki H., Sonoda S. Thalamic amnesia accompanying disruption of pain memory: a case of right anterior thalamic infarction and a subse quent vertebral compression fracture. Pain Medicine. 2017; 18 (5): 997-1000. https://doi.org/10.1093/pm/pnw277
37. Collins R., O'Hanlon E., O'Neill D. Therapeutic stroke: resolution of central post-stroke pain after a second stroke. Journal of the American Geriatrics Society. 1997; 45 (4): 532. https://doi.org/10.1111/j.1532–5415.1997.tb05188.x
38. Helmchen C., Lindig M., Petersen D., Tronnier V. Disappearance of central thalamic pain syndrome after contralateral parietal lobe lesion: implications for therapeutic brain stimulation. Pain. 2002; 98 (3): 325–330. https://doi.org/10.1016/s0304–3959(02)00139-2
39. Soria E. D., Fine E. J. Disappearance of thalamic pain after parietal subcortical stroke. Pain. 1991; 44 (3): 285–288. https://doi.org/10.1016/0304-3959(91)90098-i
40. Yarnitsky D., Barron S. A., Bental E. Disappearance of phantom pain after focal brain infarction. Pain. 1988; 32 (3): 285–287. https://doi.org/10.1016/0304–3959(88)90040-1
41. Manly T., Robertson I. H., Kapur N. Paradoxes in neurorehabilitation. –In: The Paradoxical Brain. Ch.4. Ed. by N. Kapur. –Cambridge: Cambridge University Press, 2011. P. 74–93. https://doi.org/10.1017/cbo9780511978098.006
42. Cogez J., Ribeiro E., de La Sayette V., Viader F. Complete recovery of restless legs syndrome after unilateral thalamic and tegmental infarction: A case report. Journal of Clinical Neuroscience. 2017; 44: 229–230. https://doi.org/10.1016/j.jocn.2017.06.024
43. Zhang S., Wu W., Huang G., Liu Z., Guo S., Yang J., Wang K. Resting-state connectivity in the default mode network and insula during experimental low back pain. Neural Regeneration Research. 2014; 9 (2): 135–142. https://doi.org/10.4103/1673-5374.125341
44. Letzen J. E., Robinson M. E. Negative mood influences default mode network functional connectivity in patients with chronic low back pain. Pain. 2017; 158 (1): 48–57. https://doi.org/10.1097/j.pain.0000000000000708
45. Kolesar T. A., Bilevicius E., Kornelsen J. Salience, central executive, and sensorimotor network functional connectivity alterations in failed back surgery syndrome. Scandinavian Journal of Pain. 2017; 16 (1): 10–14. https://doi.org/10.1016/j.sjpain.2017.01.008
46. Kornelsen J., Sboto-Frankenstein U., McIver T., Gervai P., Wacnik P., Berrington N., Tomanek B. Default mode network functional connectivity altered in failed back surgery syndrome. The Journal of Pain. 2013; 14 (5): 483–491. https://doi.org/10.1016/j.jpain.2012.12.018
47. Sevel L. S., Letzen J. E., Staud R., Robinson M. E. Interhemispheric dorsolateral prefrontal cortex connectivity is associated with individual differences in pain sensitivity in healthy controls. Brain Connectivity. 2016; 6 (5): 357–364. https://doi.org/10.1089/brain.2015.0405
48. Barbaud A., Hadjout K., Blard J. M., Pages M. Improvement in essential tremor after pure sensory stroke due to thalamic infarction. European Neurology. 2001; 46 (1): 57–59. https://doi.org/10.1159/000050762
49. Constantino A. E.A., Louis E. D. Unilateral disappearance of essential tremor after cerebral hemispheric infarct. Journal of Neurology. 2003; 250: 354–355. https://doi.org/10.1007/s00415-003-0970-y
50. Dupuis M. J.-M., Delwaide P. J., Boucquey D., Gonsette R. E. Homolateral disappearance of essential tremor after cerebellar stroke. Movement Disorders. 1989; 4 (2): 183–187. https://doi.org/10.1002/mds.870040210
51. Dupuis M. J.-M., Evrard F. L.A., Jacquerye P. G., Picard G. R., Lermen O. G. Disappearance of essential tremor after stroke. Movement Disorders. 2010; 25(6): 2884–2887. https://doi.org/10.1002/mds.23328
52. Im J.-H., Kim J.-S., Lee M.-C. Disapperance of essential tremor after small thalamic hemorrhage. Clinical Neurology and Neurosurgery. 1996; 98 (1): 40–42. https://doi.org/10.1016/0303–8467(95)00080-1
53. Kim J.-S., Park J.-W., Kim W.-J., Kim H.-T., Kim Y.-I., Lee K.-S. Disappearance of essential tremor after frontal cortical infarct. Movement Disorders. 2006; 21 (8): 1284–1285. https://doi.org/10.1002/mds.20894
54. Le Pira F., Giuffrida S., Panetta M. R., Lo Bartolo M. L., Politi G. Selective disappearance of essential tremor after ischaemic stroke. European Journal of Neurology. 2004; 11 (6): 422–423. https://doi.org/10.1111/j.1468-1331.2004.00824.x
55. Sarchioto M., Manca A. N., Melis M., Cossu G. Long term essential tremor recovery after stroke thalamotomy. Basal Ganglia. 2017; 9: 18–19. https://doi.org/10.1016/j.baga.2017.06.003
56. Xi C., Li S., Liu Y., Mei B. Disappearance of long-term right-sided essential tremor after stroke in the left corona radiate. Neurology Clinical Practice. 2019; 9 (6): 487–489. https://doi.org/10.1212/cpj.0000000000000650
57. Mochizuki H., Ugawa Y. Disappearance of essential tremor after stroke: Which fiber of cerebellar loops is involved in posterior limb of the internal capsule? Movement Disorders. 2011; 26 (8): 1577. https://doi.org/10.1002/mds.23712
58. Buijink A. W.G., Snijders A. H., Helmich R. C. Dystonic tremor disappearance after internal capsule stroke. Movement Disorders Clinical Practice. 2023; 10 (8): 1203–1206. https://doi.org/10.1002/mdc3.13790
59. Choi S.-M., Lee S.-H., Park M.-S., Kim B.-C., Kim M.-K., Cho K.-H. Disappearance of resting tremor after thalamic stroke involving the territory of the tuberothalamic artery. Parkinsonism and Related Disorders. 2008; 14 (4): 373–375. https://doi.org/10.1016/j.parkreldis.2007.06.016
60. Horn A., Kipp L., Meola A., Kuhn A. A., Leithner C. Teaching NeuroImages: Stroke mimicking thalamotomy. Neurology. 2016; 87 (17): e208–e209. https://doi.org/10.1212/wnl.0000000000003263
61. Probst-Cousin S., Druschky A., Neundorfer B. Disappearance of resting tremor after “stereotaxic” thalamic stroke. Neurology. 2003; 61 (7): 1013–1014. https://doi.org/10.1212/01.wnl.0000086810.14643.fc
62. Sugumar T., Shankar V., Ramesh D. A stroke of luck: abolition of Parkinson’s tremor with stroke. Movement Disorders Clinical Practice. 2020; 7 (1): 111–112. https://doi.org/10.1002/mdc3.12857
63. Lisovoski F., Koskas P., Dubard T., Dessarts I., Dehen H., Cambier J. Left tuberothalamic artery territory infarction: neuropsychological and MRI features. European Neurology. 1993; 33 (2): 181–184. https://doi.org/10.1159/000116930
64. Kumral E. Paranoid (delusional) disorder associated with tuberothalamic artery territory in farction. Cerebrovascular Diseases. 2001; 11 (2): 137–138. https://doi.org/10.1159/000047625
65. Duysens J., Nonnekes J. Parkinson's kinesia paradoxa is not a paradox. Movement Disorders. 2021; 36 (5): 1115–1118. https://doi.org/10.1002/mds.28550
66. Abramovici S., Bagic A. Epidemiology of epilepsy. In: Handbook of Clinical Neurology, Vol. 138 (3rd series). Neuroepidemiology. Ch.10. Ed. by C. Rosano, M. A. Ikram, M. Ganguli. Amsterdam: Elsevier B. V., 2016. P. 159–171. https://doi.org/10.1016/b978-0-12-802973-2.00010-0
67. Verellen R. M., Cavazos J. E. Post-traumatic epilepsy: an overview. Therapy. 2010; 7 (5): 527–531. https://doi.org/10.2217/thy.10.57
68. Da Silva A. M., Willmore L. J. Posttraumatic epilepsy. In: Handbook of Clinical Neurology, Vol. 108 (3rd series). Epilepsy, Part II. Ch. 35. Ed. by H. Stefan and W. H. Theodor. Amster dam: Elsevier B. V., 2012. P. 585–599. https://doi.org/10.1016/b978-0-444-52899-5.00017-4
69. Levine B., Cabeza R., McIntosh A.R. et al. Functional reorganisation of memory after traumatic brain injury: a study with H2 15O positron emission tomography. Journal of Neurology, Neurosurgery & Psychiatry. 2002; 73 (2): 173–181. https://doi.org/10.1136/jnnp.73.2.173
70. Balestrini S., Arzimanoglou A., Blumcke I., Scheffer I. E., Wiebe S., Zelano J., Walker M. C. The aetiologies of epilepsy. Epileptic Disorders. 2021; 23 (1): 1–16. https://doi.org/10.1684/epd.2021.1255
71. Cukiert A., Haddad M. S., Mussi A., Marino Jr. R. Traumatic callosotomy. Arquivos de Neuro-Psiquiatria (Sao Paulo). 1992; 50 (3): 365–368. https://doi.org/10.1590/s0004-282x1992000300017
72. Schachter S. C. Paradoxical phenomena in epilepsy. In: The Paradoxical Brain. Ch.11. Ed. by N. Kapur. Cambridge: Cambridge University Press, 2011. P. 204–220. https://doi.org/10.1017/cbo9780511978098.013
73. Spitz M. C., Towbin J. A., Shantz D. Closed head injury resulting in paradoxical improvement of a seizure disorder. Seizure. 2000; 9: 142–144. https://doi.org/10.1053/seiz.1999.0360
74. Trinka E., Luef G., Bauer G. Closed head injury resulting in paradoxical improvement of a seizure disorder. Seizure. 2000; 9: 531–532. https://doi.org/10.1053/seiz.2000.0457
75. Leveque M. Psychosurgery. New Techniques for Brain Disorders. Cham: Springer, 2014. 347 p. https://doi.org/10.1007/978-3-319-01144-8
76. Przeworski A., Cain N., Dunbeck K. Traumatic life events in individuals with hoarding symptoms, obsessive-compulsive symptoms, and comorbid obsessive-compulsive and hoarding symptoms. Journal of Obsessive-Compulsive and Related Disorders. 2014; 3 (1): 52–59. https://doi.org/10.1016/j.jocrd.2013.12.002
77. Hosseini S. H., Azari P., Abdi R., Alizadeh-Navaei R. Suppression of obsessive-compulsive symptoms after head trauma. Case Reports in Medicine. 2012; 70 (1): 399–401. https://doi.org/10.1155/2012/909614
78. Solyom L., Turnbull I. M., Wilensky M. A case of self-inflicted leucotomy. British Journal of Psychiatry. 1987; 151 (6): 855–857. https://doi.org/10.1192/bjp.151.6.855
79. Echizen K., Sakakibara E., Suga M., Kasai K. Improvements in obsessive–compulsive disorder and schizophrenia after left putaminal hemorrhage. Psychiatry and Clinical Neurosciences. 2021; 75 (11): 354–355. https://doi.org/10.1111/pcn.13296
80. Fujii T., Otsuka Y., Suzuki K., Endo K., Yamadori A. Improvement of obsessive-compulsive disorder following left putaminal hemorrhage. European Neurology. 2005; 54 (3): 166–170. https://doi.org/10.1159/000090109
81. Yaryura-Tobias J.A., Neziroglu F. Basal ganglia hemorrhagic ablation associated with temporary suppression of obsessive-compulsive symptoms. Revista Brasileira de Psiquiatria. 2003; 25 (1): 40–42. https://doi.org/10.1590/s1516–44462003000100008
82. Levine R., Lipson S., Devinsky O. Resolution of eating disorders after right temporal lesions. Epilepsy & Behavior. 2003; 4 (6): 781–783. https://doi.org/10.1016/j.yebeh.2003.08.011
83. Su T., Gong J., Tang G., Qiu S., Chen P., Chen G., Wang J., Huang L., Wang Y. Structural and functional brain alterations in anorexia nervosa: A multimodal meta-analysis of neuroimaging studies. Human Brain Mapping. 2021; 42 (15): 5154–5169. https://doi.org/10.1002/hbm.25602
84. Geschwind N. Mechanisms of change after brain lesions. Annals of the New York Academy of Sciences. 1985; 457 (1): 1–12. https://doi.org/10.1111/j.1749–6632.1985.tb20795.x
Рецензия
Для цитирования:
Дамулин И.В. Парадоксальная психоневрология: необычное течение обычных заболеваний. Медицинский алфавит. 2025;(2):41-47. https://doi.org/10.33667/2078-5631-2025-2-41-47
For citation:
Damulin I.V. Paradoxical neuropsychiatry: an unusual course of common diseases. Medical alphabet. 2025;(2):41-47. (In Russ.) https://doi.org/10.33667/2078-5631-2025-2-41-47