Preview

Medical alphabet

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Disorders of biomechanics of walking and foot deformation

https://doi.org/10.33667/2078-5631-2024-33-26-30

Abstract

Gait is a motor act which is necessary to do everyday tasks and social interaction. Moreover, it is an important psycho-emotional factor affecting the normal development of person. Nowadays we have a lot of research and hypotheses about when and how the most complex locomotor skill is formed. We made this review summarizing various Russian and foreign publications on this topic over the past 5–10 years to show modern scientific ideas in this field. The review represents the normal biomechanics of gait and the walking cycle in healthy people, factors which affect the development of gait in children, as well as its various pathological forms which may cause some deformities of the musculoskeletal system and diseases. Gait is the most complex cyclic process of interaction between biological mechanisms and social factors of human life. The hereditary and own biological aspects have an influence on gait formation, as well as the character, temperament, profession and upbringing of the child affect the gait biomechanics and the gait pathology in children.

About the Authors

E. V. Zhukova
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Zhukova Ekaterina V., postgraduate student at Dept of Sports Medicine and Medical Rehabilitation

Moscow



N. V. Polukarov
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Polukarov Nikolay V., PhD Med, associate professor at Dept of Sports Medicine and Medical Rehabilitation

Moscow



E. M. Morozenkova
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Morozenkova Ekaterina M., senior laboratory assistant at Dept of Sports Medicine and Medical Rehabilitation

Moscow



A. D. Kuklev
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Kuklev Aleksander D., resident physician at Dept of Sports Medicine and Medical Rehabilitation

Moscow



M. V. V.
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Volkova Maria V., 3rd year student at Medical Faculty

Moscow



References

1. Bernstein N.A. Physiology of Movements and Activity. Moscow: Nauka, 1990. 373 p. (In Russ.).

2. Teulier C., Lee D.K., Ulrich B.D. Early gait development in human infants: Plasticity and clinical applications. Developmental Psychobiology. 2015; 57 (4): 447-458. DOI: 10.1002/dev.21291

3. Thelen E., Fisher D., Ridley-Johnson R. The relationship between physical growth and a newborn reflex. Infant Behavior and Development. 1984; 7 (4): 479-493. DOI: 10.1016/s0163-6383 (84) 800077

4. Armand S., Decoulon G., Bonnefoy-Mazure A. Gait analysis in children with cerebral palsy. EFORT Open Reviews. 2016; 1 (12): 448-460. DOI: 10.1302/2058–5241.1.000052

5. Reissland N., Francis B., Aydin E. et al. The development of anticipation in the fetus: A longitudinal account of human fetal mouth movements in reaction to and anticipation of touch. Developmental Psychobiology. 2014; 56 (5): 955-963. DOI: 10.1002/dev.21172

6. Zoia S., Blason L., D’Ottavio G. et al. The development of upper limb movements: From fetal to post-natal life. PloS One. 2013; 8 (12). DOI: 10.1371/journal.pone.0080876

7. Dominici N., Ivanenko Y.P., Cappellini G. Loc primitives in newborn babies and their development. Science. 2011; 334 (6058): 997-999. DOI: 10.1126/science.1210617

8. Siekerman K., Barbu-Roth M., Anderson D.I. et al. Treadmill stimulation improves newborn stepping. Developmental Psychobiology. 2015; 57 (2): 247-254. DOI: 10.1002/dev.21270

9. Okamoto T., Okamoto K., Andrew P. D. Electromyographic study of newborn stepping in neonates and young infants. Electromyography and clinical neurophysiology. 2001; 41 (5): 289-296.

10. Forssberg H. Ontogeny of human locomotor control I. Infant stepping supported locomotion and transition to independent locomotion. Experimental Brain Research. 1985; 57 (3): 480-493. DOI: 10.1007/BF00237835

11. Futagi Y., Toribe Y., Suzuki Y. The grasp reflex and moro reflex in infants: hierarchy of primitive reflex responses. Int J. Pediatr. 2012; (12): 191562. DOI: 10.1155/2012/191562

12. Thelen E., Ulrich B.D., Niles D. Bilateral coordination in human infants: Stepping on a split-belt treadmill. Journal of Experimental Psychology: Human Perception and Performance. 1987; 13 (3): 405-410. DOI: 10.1037//0096-1523.13.3.405

13. Yang J.F., Lamont E.V., Pang M.Y. Split-belt treadmill stepping in infants suggests autonomous pattern generators for the left and right leg in humans. Journal of Neuroscience. 2005; 25 (29): 6869-6876. DOI: 10.1523/JNEUROSCI.1765-05.2005

14. Lamb T., Yang J.F. Could different directions of infant stepping be controlled by the same locomotor central pattern generator. Journal of Neurophysiology. 2000; 83 (5): 2814-2824. DOI: 10.1152/jn.2000.83.5.2814

15. Karmiloff-Smith A. Preaching to the converted? From constructivism to neuroconstructivism. Child Development Perspectives. 2009; 3 (2): 99-102. DOI: 10.1111/j.1750-8606.2009.00086.x

16. Hillman S.J., Stansfield B.W., Richardson A.M. et al. Development of temporal and distance parameters of gait in normal children. Gait and Posture. 2009; 29 (1): 81-85. DOI: 10.1016/j.gaitpost.2008.06.012

17. Chester V.L., Tingley M., Biden E.N. A comparison of kinetic gait parameters for 3–13-year-olds. Clinical Biomechanics. 2006; 21 (7): 726-732. DOI: 10.1016/j.clinbiomech.2006.02.007

18. Menkveld S.R., Knipstein E.A., Quinn J.R. Analysis of gait patterns in normal schoolaged children. Journal of Pediatric Orthopaedics. 1988; 8 (3): 263-267. DOI: 10.10 97/0124139819880500000002

19. Pomarino D., Ramírez L. J., Pomarino A. Analysis of Physiological Gait Pattern in Children Without the Influence of Footwear. Foot and Ankle Specialist. 2016; 9 (6): 506-512. DOI: 10.1177/1938640016666914

20. Zhukova E.V., Achkasov E.E., Polukarov N.V. Impact of the individual approach of conservative therapy of flatfoot on reducing pain and improving the quality of life of patients. Bulletin of Rehabilitation Medicine. 2019; 5 (93): 74-80. (In Russ.). DOI: 10.1136/bmjsem2019-000565.

21. Schwend R.M., Drennan J.C. Cavus foot deformity in children. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2003; 11 (3): 201-211. DOI: 10. 5435/0012463520030500000007

22. Tawada S. Motor development of Down syndrome. J. Clin. Rehabil. 2011; 20: 529–534.

23. Zhukova E.V., Achkasov E.E., Polukarov N.V. et al. Influence of the biomechanics of walking on the formation of foot pathologies. Questions of practical pediatrics. 2018; 13 (4): 91-97. (in Russ). DOI: 10.20953/18177646201849197

24. Calhoun M., Longworth M., Chester V. L. Gait patterns in children with autism. Clinical Biomechanics. 2011; 26 (2): 200-206. DOI: 10.1016/j.clinbiomech.2010.09.013.


Review

For citations:


Zhukova E.V., Polukarov N.V., Morozenkova E.M., Kuklev A.D., V. M.V. Disorders of biomechanics of walking and foot deformation. Medical alphabet. 2024;(33):26-30. (In Russ.) https://doi.org/10.33667/2078-5631-2024-33-26-30

Views: 283


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)