Preview

Medical alphabet

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Post-infectious irritable bowel syndrome: Focus on serotonin metabolism disturbances and gut microbiota modulation

https://doi.org/10.33667/2078-5631-2024-34-36-41

Abstract

Post-infectious irritable bowel syndrome (PI–IBS) is the first phenotype of the disease described in the literature and the most studied to date. The prevalence of PI–IBS in the population continues to grow steadily especially in the post-COVID-19 pandemic period. Taking into account the accumulated scientific and clinical data dysfunction of the functional axis «microbiota-gut-brain» associated with the formation of visceral hypersensitivity and intestinal motor disorders due to abnormal serotonin metabolism, increased intestinal permeability and low-grade inflammation is considered as a key pathogenetic factor underlying the development and persistence of PI–IBS symptoms. This review article analyzes and summarizes information on the mechanisms of PI–IBS associated with changes in neurohumoral regulation, as well as the qualitative and quantitative composition of the intestinal microbiota. In addition, data on the possibility of using probiotic therapy in the complex therapy of patients with PI–IBS are presented.

About the Authors

O. V. Gaus
Omsk State Medical University
Russian Federation

Gaus Olga V., DM Sci (habil.), professor at Dept of Faculty Therapy and Gastroenterology

Omsk



A. S. Fedorenko
Clinical Medical and Sanitary Unit No. 7
Russian Federation

Sudakova Alla N., PhD Med, associate professor at Dept of Faculty Therapy and Gastroenterology

Omsk



A. N. Sudakova
Omsk State Medical University
Russian Federation

Sudakova Alla N., PhD Med, associate professor at Dept of Faculty Therapy and Gastroenterology

Omsk



References

1. Sperber A. D., Bangdiwala S. I., Drossman D. A., Ghoshal U. C., Simren M., Tack J. et al. Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders, Results of Rome Foundation Global Study. Gastroenterology. 2021; 160:99–114. e3. DOI: 10.1053/j.gastro.2020.04.014

2. Ionescu V. A., Gheorghe G., Georgescu T. F., Bacalbasa N., Gheorghe F., Diaconu C. C. The Latest Data Concerning the Etiology and Pathogenesis of Irritable Bowel Syndrome. Journal of Clinical Medicine. 2024; 13(17):5124. DOI:10.3390/jcm13175124

3. Black C. J., Drossman D. A., Talley N. J., Ruddy J., Ford A. C. Functional gastrointestinal disorders: Advances in understanding and management. Lancet. 2020; 396: 1664–1674. doi: 10.1016/S0140-6736(20 32115-2

4. Belova A. A., Shestakova M. D., Khavkin A. I. Giardiasis and post-infectious IBS. Experimental and Clinical Gastroenterology. 2021;(4):178–187. (In Russ.). DOI: 10.31146/1682-8658-ecg-188-4-178-187

5. Gaus O. V., Livzan M. A. Irritable bowel syndrome phenotypes: leading factors of genetics and epigenetics, mechanisms of formation. Therapeutic archive. 2023; 95(2): 164–172. (In Russ.). DOI: 10.26442/00403660.2023.02.202111

6. Barbara G. et al. Rome Foundation Working Team Report on Post-Infection Irritable Bowel Syndrome. Gastroenterology. Gastroenterology. 2019; 156(1): 46–58.e7 DOI: 10.1053/j.gastro.2018.07.011

7. Marshall J. K., Thabane M., Garg A. X. et al. Incidence and epidemiology of irritable bowel syndrome after a large waterborne outbreak of bacterial dysentery. Gastroenterology. 2006; 131(2): 445–450. DOI:10.1053/j.gastro.2006.05.053

8. Klem F., Wadhwa A., Prokop L. J., Sundt W. J., Farrugia G., Camilleri M., et al. Prevalence, risk factors and outcomes of irritable bowel syndrome after infectious enteritis: a systemic review and meta-analysis. Gastroenterology. 2017; 152(5): 1042–54. DOI: 10.1053/j.gastro.2016.12.039

9. Svendsen T., Bytzer P., Engsbro A. L. Systematic review with meta-analyses: does the pathogen matter in post-infectious irritable bowel syndrome? Scand. J. Gastroenterol. 2019; 54: 546–562.

10. Zanini B., Ricci C., Bandera F., Caselani F., Magni A., Laronga A. M. et al. Incidence of postinfectious irritable bowel syndrome and functional intestinal disorders following a water-borne viral gastroenteritis outbreak. Am J Gastroenterol. 2012; 107: 891–899. DOI:10.1038/ajg.2012.102.

11. Marshall J. K., Thabane M., Borgaonkar M. R., James C. Postinfectious irritable bowel syndrome after a food-borne outbreak of acute gastroenteritis attributed to a viral pathogen, Clin. Gastroenterol. Hepatol. 2007; 5: 457–460. DOI: 10.1155/2008/847367

12. Wang Z., Peng Y., Chen M., Peng L., Huang Y., Lin W. The Prevalence of Irritable Bowel Syndrome after Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Their Association: A Systematic Review and Meta-Analysis of Observational Studies. J Clin Med. 2023; 12(5): 1865. DOI: 10.3390/jcm12051865.

13. Oshima T., Siah K. T.H., Yoshimoto T. et al. Impacts of the COVID-19 pandemic on functional dyspepsia and IBS: a populationbased survey. J. Gastroenterol Hepatol. 2021; 36 (7): 1820–1827. DOI: 10.1111/jgh.15346.

14. Gros M., Gros B., Mesonero J. E., Latorre E. Neurotransmitter dysfunction in irritable bowel syndrome: emerging approaches for management,. J Clin Med. 2021; 10(15): 3429. DOI: 10.3390/jcm10153429.

15. Sharp T., Barnes N. M. Central 5-HT receptors and their function; present and future, Neuropharmacology. 2020; 177: 108155. DOI:10.1016/j.neuropharm.2020.108155

16. Gershon M. D., Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders, Gastroenterology. 2007; 132: 397–414

17. Rus C. P., de Vries B. E.K., de Vries I. E.J. et al. Treatment of 95 post-Covid patients with SSRIs. Sci Rep. 2023; 13(1): 18599. DOI: 10.1038/s41598-023-45072-9

18. Visos-Varela I., Zapata-Cachafeiro M., Pineiro-Lamas M., Carracedo-Martinez E., Saez M., Herdeiro M. T. et al. Repurposing selective serotonin reuptake inhibitors for severity of COVID-19: a population-based study, Eur. Neuropsychopharmacol. 2023; 71: 96–108.

19. Atkinson W., Lockhart S., Whorwell P. J., Keevil B., Houghton L. A. Altered 5hydroxytryptamine signaling in patients with constipationand diarrheapredominant irritable bowel syndrome, Gastroenterology. 2006; 130: 34–43. DOI: 10.1053/j.gastro.2005.09.031

20. Gaus O. V., Livzan M. A. Eating habits, anxiety and depression levels in patients with irritable bowel syndrome: clinical and laboratory comparisons. Russian Journal of Gastroenterology, Hepatology, Proctology. 2023; 33(2): 34–44. (In Russ.). DOI: 10.22416/1382-4376-2023-33-2-34-44

21. Spiller R. C., Jenkins D., Thornely J. P. et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Camylobacter enteritis and in post-dysentric irritable bowel syndrome. Gut. 2000; 47: 804–811. DOI: 10.1136/gut.47.6.804

22. Lee H. S., Lim J. H., Park H., Lee S. I. Increased immunoreactive cells in intestinal mucosa of postinfectious irritable bowel syndrome patients 3 years after acute Shigella infection-an observation in a small case control study. Yonsei Med J. 2009; 51: 45–51. DOI: 10.3349/ymj.2010.51.1.45

23. Khan W. I., Ghia J. E. Gut hormones: emerging role in immune activation and inflammation. Clin Exp Immunol. 2010; 161: 19–27 DOI: 10.1111/j.1365-2249.2010.04150.x

24. El-Salhy M., Wendelbo I., Gundersen D. Serotonin and serotonin transporter in the rectum of patients with irritable bowel disease, Mol. Med. Rep. 2013; 8: 451–455.

25. Faure C., Patey N., Gauthier C., Brooks E. M., Mawe G. M. Serotonin signaling is altered in irritable bowel syndrome with diarrhea but not in functional dyspepsia in pediatric age patients, Gastroenterology. 2010; 139: 249–258. DOI: 10.1053/j.gastro.2010.03.032

26. Zhang L. Y., Dong X., Liu Z. L., Mo J. Z., Fang J. Y., Xiao S. D. et al. Luminal serotonin time-dependently modulates vagal afferent driven antinociception in response to colorectal distention in rats, Neurogastroenterol. Motil. 2011; 3: 62–69. DOI: 10.1111/j.1365-2982.2010.01589

27. Li C. P., Ling C., Biancani P., Behar J. Effect of progesterone on colonic motility and fecal output in mice with diarrhea, Neurogastroenterol. Motil. 2012; 24: 392–e174

28. Greig J., Gandotra N., Tackett J. J., Bamdad M. C., Cowles R. A. Enhanced serotonin signaling increases intestinal neuroplasticity, J. Surg. Res. 2016; 206: 151–158. DOI: 10.14814/phy2.14278

29. Bischoff S. C., Mailer R., Pabst O., Weier G., Sedlik W., Li Z. et al. Role of serotonin in intestinal inflammation: knockout of serotonin reuptake transporter exacerbates 2,4,6-trinitrobenzene sulfonic acid colitis in mice, Am. J. Physiol. Gastrointest. Liver Physiol. 2009; 296: G685–G695. DOI:10.3390/ijms22179487

30. Yu F. Y., Huang S. G., Zhang H. Y., Ye H., Chi H. G., Zou Y. et al. Comparison of 5-hydroxytryptophan signaling pathway characteristics in diarrhea-predominant irritable bowel syndrome and ulcerative colitis, World J. Gastroenterol. 2016; 22: 3451–3459. DOI:10.3748/wjg.v20.i41.15299

31. Zou B. C., Dong L., Wang Y., Wang S. H., Cao M. B. Expression and role of 5-HT7 receptor in brain and intestine in rats with irritable bowel syndrome, Chin. Med. J. 2007; 120: 2069–2074.

32. Lembo A., Sultan S., Chang L., Heidelbaugh J. J., Smalley W., Verne G. N. AGA clinical practice guideline on the pharmacological Management of Irritable Bowel Syndrome with Diarrhea, Gastroenterology. 2022; 163: 137–151.

33. Camilleri M., Boeckxstaens G. Irritable bowel syndrome: treatment based on pathophysiology and biomarkers. Gut. 2023; 72: 590–599. DOI: 10.1136/gutjnl-2022-328515

34. Kim J. J., Bridle B. W., Ghia J. E., Wang H., Syed S. N., Manocha M. M. et al. Targeted inhibition of serotonin type 7 (5-HT7) receptor function modulates immune responses and reduces the severity of intestinal inflammation, J. Immunol. 2013; 190: 4795–4804.

35. Yaakob N. S., Chinkwo K. A., Chetty N., Coupar I. M., Irving H. R. Distribution of 5HT3, 5-HT4, and 5-HT7 receptors along the human Colon, J Neurogastroenterol Motil. 2015; 21: 361–369. DOI:10.5056/jnm15093

36. Gaus O. V., Livzan M. A. Modulation of intestinal microbiota as a leading factor in the pathogenesis of the formation of IBS phenotypes. RMJ. 2023; 5: 20–26. (In Russ.).

37. El-Salhy M., Hatlebakk J. G., Gilja O. H., Brathen Kristoffersen A., Hausken T. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study. Gut. 2020; 69: 859–867.

38. Su Q., Tun H. M., Liu Q., Yeoh Y. K., Mak J. W.Y., Chan F. K. et al. Gut microbiome signatures reflect different subtypes of irritable bowel syndrome, Gut Microbes 15 (2023), 2157697

39. Dicksved J., Ellström P., Engstrand L., Rautelin H. Susceptibility to Campylobacter infection is associated with the species composition of the human fecal microbiota. mBio. 2014; 5(5): e01212–14.

40. Jalanka-Tuovinen J., Salojärvi J., Salonen A. et al. Faecal microbiota composition and host-microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut. 2014; 63(11): 1737–1745

41. Zuo T. Zhang F., Lui G. C.Y., Yeoh Y. K., Li A. Y.L., Zhan H. et al. Alterations in Gut Microbiota of Patients With COVID 19 During Time of Hospitalization. Gastroenterology. 2020; 159 (3): 944–955.e8. DOI:10.1053/j.gastro.2020.05.048 33.

42. Barandouzi Z. A., Lee J., Del Carmen Rosas M., Chen J., Henderson W. A., Starkweather A. R. et al. Associations of neurotransmitters and the gut microbiome with emotional distress in mixed type of irritable bowel syndrome. Sci Rep. 2022; 12(1): 1648 DOI: 10.1038/s41598-022-05756-0].

43. Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog. 2013; 9(11): e1003726. DOI: 10.1371/journal.ppat.1003726

44. Yano J. M., Yu K., Donaldson G. P., Shastri G. G., Ann P., Ma L. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015; 161: 264–276.

45. Yang J., Wang P., Liu T., Lin L., Li L., Kou G. et al. Involvement of mucosal flora and enterochromaffin cells of the caecum and descending colon in diarrhoea-predominant irritable bowel syndrome. BMC Microbiol. 2021; 21(1): 316. DOI: 10.1186/s12866-021-02380-2.].

46. Sun Q., Jia Q., Song L., Duan L. Alterations in fecal short-chain fatty acids in patients with irritable bowel syndrome: A systematic review and meta-analysis. Medicine (Baltimore). 2019; 98(7): e14513. DOI: 10.1097/MD.0000000000014513

47. Shaidullov I. F., Sorokina D. M., Sitdikov F. G., Hermann A., Abdulkhakov S. R., Sitdikova G. F. Short chain fatty acids and colon motility in a mouse model of irritable bowel syndrome. BMC Gastroenterol. 2021; 21(1): 37. DOI: 10.1186/s12876-021-01613-y.

48. Peleman C., Camilleri M., Busciglio I., Burton D., Donato L., Zinsmeister A. R. Colonic Transit and Bile Acid Synthesis or Excretion in Patients With Irritable Bowel Syndrome-Diarrhea Without Bile Acid Malabsorption. Clin Gastroenterol Hepatol. 2017; 15(5): 720–727.e1. DOI: 10.1016/j.cgh.2016.11.012.

49. Camilleri M., Carlson P., Acosta A., Busciglio I. Colonic mucosal gene expression and genotype in irritable bowel syndrome patients with normal or elevated fecal bile acid excretion. Am J Physiol Gastrointest Liver Physiol. 2015; 309(1): G10–20. DOI: 10.1152/ajpgi.00080.2015.

50. Zhao L., Yang W., Chen Y., Huang F., Lu L., Lin C. et al. A Clostridia-rich microbiota enhances bile acid excretion in diarrhea-predominant irritable bowel syndrome. J Clin Invest. 2020; 130(1): 438–450. DOI: 10.1172/JCI130976.

51. Zhan K., Wu H., Xu Y., Rao K., Zheng H., Qin S. et al. The function of the gut microbiota-bile acid-TGR 5 axis in diarrhea-predominant irritable bowel syndrome. mSystems. 2024; 9(3): e0129923. DOI: 10.1128/msystems.01299-23.

52. Chong P. P., Chin V. K., Looi C. Y., Wong W. F., Madhavan P., Yong V. C. The Microbiome and Irritable Bowel Syndrome – A Review on the Pathophysiology, Current Research and Future Therapy. Front. Microbiol. 2019; 10: 1136.

53. Simon E., Călinoiu L. F., Mitrea L., Vodnar D. C. Probiotics, Prebiotics, and Synbiotics: Implications and Beneficial Effects against Irritable Bowel Syndrome. Nutrients. 2021; 13(6): 2112. DOI: 10.3390/nu13062112

54. Ford A. C., Moayyedi P., Lacy B. E. et al. American College of Gastroenterology monograph on the management of irritable bowel syndrome and chronic idiopathic constipation. 2014; 109: S 2–S 27. DOI: 10.1038/ajg.2014.187

55. Su G. L., Ko C. W., Bercik P. et al. AGA Clinical Practice Guidelines on the Role of Probiotics in the Management of Gastrointestinal Disorders. Gastroenterology. 2020; 159 (2): 697–705. DOI: 10.1053/j.gastro.2020.05.059

56. World Gastroenterology Organisation Global Guidelines. Probiotics and prebiotics. [electronic resource] – Available from: https://www.worldgastroenterology.org/guidelines/probiotics-and-prebiotics/probiotics-and-prebiotics-english

57. Ivashkin V. T., Gorelov A. V., Abdulganieva D. I., Alekseeva O. P., Alekseenko S. A., Baranovsky A. Yu. et al. Methodical recommendations of the Scientific Society for the Promotion of Clinical Study of the Human Microbiome (NSCMSHM) and the Russian Gastroenterological Association (RGA) on the use of probiotics, prebiotics, synbiotics, metabiotics and functional food products enriched with them for the treatment and prevention of gastrointestinal diseases in adults and children. Russian Journal of Gastroenterology, Hepatology, Proctology. 2024. (In Russ.). DOI: 10.22416/1382-4376-2024-117-312

58. Vasant D. H., Paine P. A., Black C. J. et al. British Society of Gastroenterology guidelines on the management of irritable bowel syndrome. Gut. 2021; 70(7): 1214–1240. DOI: 10.1136/gutjnl-2021-324598

59. Tiwari S. K., Dicks L. M.T., Popov I. V., Karaseva A., Ermakov A. M., Suvorov A. et al. Probiotics at War Against Viruses: What Is Missing From the Picture? Front. Microbiol. 2020; 11: 1877. DOI: 10.3389/fmicb.2020.01877

60. Chiba Y., Shida K., Nagata S., Wada M., Bian L., Wang C. et al. Well-Controlled Proinflammatory Cytokine Responses of Peyer’s Patch Cells to Probiotic Lactobacillus Casei. Immunology. 2010; 130: 352–362. DOI: 10.1111/j.1365-2567.2009.03204.x

61. Chowdhury A. H., Cámara M., Verma C., Eremin O., Kulkarni A. D., Lobo D. N. Modulation of T Regulatory and Dendritic Cell Phenotypes Following Ingestion of Bifidobacterium Longum, AHCC® and Azithromycin in Healthy Individuals. Nutrients. 2019; 11: 2470. DOI: 10.3390/nu11102470.

62. Trabattoni D., Parisotto S., Borgonovo L., Toscano M., Rizzardini G., Clerici M. et al. Probiotics Reduce Gut Microbial Translocation and Improve Adult Atopic Dermatitis. J. Clin. Gastroenterol. 2012; 46: S 33–S 40. DOI: 10.1097/MCG.0b013e31826a8468.

63. Dwivedi M., Kumar P., Laddha N. C., Kemp E. H. Induction of Regulatory T Cells: A Role for Probiotics and Prebiotics to Suppress Autoimmunity. Autoimmun. Rev. 2016; 15:3 79–392. DOI: 10.1016/j.autrev.2016.01.002

64. Wu Y., Li Y., Zheng Q., Li L. The Efficacy of Probiotics, Prebiotics, Synbiotics, and Fecal Microbiota Transplantation in Irritable Bowel Syndrome: A Systematic Review and Network Meta-Analysis. Nutrients. 2024; 16(13): 2114. DOI: 10.3390/nu16132114.

65. O'Mahony L., McCarthy J., Kelly P. et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology. 2005; 128(3): 541–551. DOI: 10.1053/j.gastro.2004.11.050

66. Zakostelska Z., Kverka M., Klimesova K. et al. Lysate of probiotic Lactobacillus casei DN-114001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS One. 2011; 6(11): e27961. DOI: 10.1371/journal.pone.0027961.

67. Ferrario C., Taverniti V., Milani C. et al. Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J. Nutr. 2014; 144(11): 1787–1796. DOI: 10.3945/jn.114.197723.

68. D'Incà R., Barollo M., Scarpa M. et al. Rectal administration of Lactobacillus casei DG modifies flora composition and Toll-like receptor expression in colonic mucosa of patients with mild ulcerative colitis. Dig. Dis. Sci. 2011; 56(4): 1178–1187. DOI: 10.1007/s10620-010-1384-1.

69. Cremon C., Guglielmetti S., Gargari G. et al. Effect of Lactobacillus paracasei CNCM I-1572 on symptoms, gut microbiota, short chain fatty acids, and immune activation in patients with irritable bowel syndrome: A pilot randomized clinical trial. United. European. Gastroenterol. J. 2018; 6(4): 604–613. DOI: 10.1177/2050640617736478

70. Connell M., Shin A., James-Stevenson T. et al. Systematic review and meta-analysis: Efficacy of patented probiotic, VSL#3, in irritable bowel syndrome. Neurogastroenterology and motility. 2018; 30(12): e13427. DOI:10.1111/nmo.13490


Review

For citations:


Gaus O.V., Fedorenko A.S., Sudakova A.N. Post-infectious irritable bowel syndrome: Focus on serotonin metabolism disturbances and gut microbiota modulation. Medical alphabet. 2024;(34):36-41. (In Russ.) https://doi.org/10.33667/2078-5631-2024-34-36-41

Views: 157


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)