

Влияние экспозом-факторов на течение акне
https://doi.org/10.33667/2078-5631-2024-9-31-37
Аннотация
Кожа, представляя собой пограничный орган, который обеспечивает защитную функцию и постоянно подвергается воздействию окружающей среды. В научной литературе для описания экзогенных факторов применяется общепризнанный термин «экспозом- факторы». Воздействуя на кожный барьер и микробиоту кожи, они оказывают существенное влияние на течение акне, что подтверждается многочисленными исследованиями. Под термином «экспозом» понимают совокупную меру воздействия окружающей среды и связанных с ней биологических реакций на человека на протяжении всей жизни. Идентификация наиболее часто встречающихся факторов, повышающих риск развития акне, и уменьшение их воздействия на кожу является неотъемлемой частью в решении проблемы лечения акне. В статье приведены данные обзора литературы и собственных исследований по изучению влияния экспозом-факторов на течение акне.
Об авторах
Н. В. ГрязеваРоссия
Грязева Наталья Владимировна - к.м.н., доцент кафедры дерматовенерологии и косметологии, проректор по учебной работе.
Москва
А. В. Безбородова
Россия
Безбородова Анна Владимировна - ординатор кафедры дерматовенерологии и косметологии.
Москва
В. Э. Казарян
Россия
Казарян Валерия Эдуардовна - ординатор кафедры дерматовенерологии и косметологии.
Москва
М. С. Круглова
Россия
Круглова Мария Сергеевна - студентка 3 курса лечебного факультета.
Москва
Список литературы
1. Круглова Л. С. и др. Акне и розацеа.– 2021.
2. Rappaport S. M. Genetic factors are not the major causes of chronic diseases // PloS one.– 2016.– V. 11.– № . 4.– P. e0154387. doi: 10.1371/journal.pone.0154387.
3. Miller G. W., Jones D. P. The nature of nurture: refining the definition of the exposome //Toxicological sciences.– 2014.– V. 137.– № . 1.– P. 1–2. doi: 10.1093/toxsci/kft251.
4. Dréno B. et al. The influence of exposome on acne //Journal of the European Academy of Dermatology and Venereology.– 2018.– V. 32.– № . 5.– P. 812–819. doi: 10.1111/jdv.14820.
5. Aghasi M. et al. Dairy intake and acne development: a meta-analysis of observational studies //Clinical Nutrition.– 2019.– V. 38.– № . 3.– P. 1067–1075. doi: 10.1016/j.clnu.2018.04.015.
6. Monfrecola G. et al. Mechanistic target of rapamycin (mTOR) expression is increased in acne patients’ skin //Experimental Dermatology.– 2016.– V. 25.– № . 2.– P. 153–155. doi: 10.1111/exd.12885.
7. Fan W. Q. et al. Insulin-like growth factor 1/insulin signaling activates androgen signaling through direct interactions of Foxo1 with androgen receptor //Journal of Biological Chemistry.– 2007.– V. 282.– № . 10.– P. 7329–7338. doi: 10.1074/jbc.M610447200.
8. Melnik B.C., Schmitz G. Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris //Experimental dermatology.– 2009.– V. 18.– № . 10.– P. 833–841. doi: 10.1111/j.1600–0625.2009.00924.x.
9. Kucharska A., Szmurło A., Sińska B. Significance of diet in treated and untreated acne vulgaris //Advances in Dermatology and Allergology/Postępy Dermatologii i Alergologii.– 2016.– V. 33.– № . 2.– P. 81–86. doi: 10.5114/ada.2016.59146.
10. Çerman A. A. et al. Dietary glycemic factors, insulin resistance, and adiponectin levels in acne vulgaris //Journal of the American Academy of Dermatology.– 2016.– V. 75.– № .1.– P. 155–162. doi: 10.1016/j.jaad.2016.02.1220.
11. Baldwin H., Tan J. Effects of diet on acne and its response to treatment //American journal of clinical dermatology.– 2021.– V. 22.– P. 55–65. doi: 10.1007/s40257–020–00542-y.
12. Knaggs H. E. et al. Post-adolescent acne //International journal of cosmetic science.– 2004.– V. 26.– № . 3.– P. 129–138. doi.org/10.1111/j.1467–2494.2004.00210.x.
13. Bozdag G. et al. The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis //Human reproduction.– 2016.– V. 31.– № . 12.– P. 2841–2855. doi.org/10.1093/humrep/dew218.
14. Tyler K.H., Zirwas M.J. Contraception and the dermatologist //Journal of the American Academy of Dermatology.– 2013.– V. 68.– № . 6.– P. 1022–1029. doi: 10.1016/j.jaad.2012.11.018.
15. Sanam M., Ziba O. Desogestrel+ ethinylestradiol versus levonorgestrel+ ethinylestradiol //Saudi Med J.– 2011.– V. 32.– № . 1.– P. 23–26.
16. Barbieri J. S. et al. Influence of contraception class on incidence and severity of acne vulgaris //Obstetrics and gynecology.– 2020.– V. 135.– № . 6.– P. 1306. doi: 10.1097/AOG.0000000000003880.
17. Perez M. et al. When strength turns into disease: acne fulminans in a bodybuilder //Anais Brasileiros de Dermatologia.– 2016.– V. 91.– P. 706–706. doi: 10.1590/abd1806–4841.20165345.
18. Kang D. et al. Vitamin B 12 modulates the transcriptome of the skin microbiota in acne pathogenesis //Science translational medicine.– 2015.– V. 7.– № . 293.– P. 293ra103–293ra103. doi: 10.1126/scitranslmed.aab2009.
19. Kazandjieva J., Tsankov N. Drug-induced acne //Clinics in dermatology.– 2017.– V. 35.– № . 2.– P. 156–162. doi: 10.1016/j.clindermatol.2016.10.007.
20. Nguyen S. H., Dang T. P., Maibach H. I. Comedogenicity in rabbit: some cosmetic ingredients/vehicles //Cutaneous and ocular toxicology.– 2007.– V. 26.– № . 4.– P. 287–292. doi: 10.1080/15569520701555383.
21. Dréno B. et al. The skin microbiome: a new actor in inflammatory acne //American journal of clinical dermatology.– 2020.– V. 21.– № . Suppl 1.– P. 18–24. doi: 10.1007/s40257–020–00531–1.
22. Lambers H. et al. Natural skin surface pH is on average below 5, which is beneficial for its resident flora //International journal of cosmetic science.– 2006.– V. 28.– № . 5.– P. 359–370. doi: 10.1111/j.1467–2494.2006.00344.x.
23. Warshaw E. M. et al. Patch test reactions associated with sunscreen products and the importance of testing to an expanded series: retrospective analysis of North American Contact Dermatitis Group data, 2001 to 2010 //Dermatitis.– 2013.– V. 24.– № . 4.– P. 176–182. doi: 10.1097/DER.0b013e3182983845.
24. Yano S. et al. Mechanical stretching in vitro regulates signal transduction pathways and cellular proliferation in human epidermal keratinocytes //Journal of investigative dermatology.– 2004.– V. 122.– № . 3.– P. 783–790. doi: 10.1111/j.0022–202X.2004.22328.x.
25. Yano S. et al. Activation of Akt by mechanical stretching in human epidermal keratinocytes //Experimental dermatology.– 2006.– V. 15.– № . 5.– P. 356–361. doi: 10.1111/j.0906–6705.2006.00425.x.
26. Krutmann J. et al. Pollution and acne: is there a link? //Clinical, cosmetic and investigational dermatology.– 2017.– P. 199–204. doi: 10.2147/CCID.S131323.
27. Afaq F. et al. Aryl hydrocarbon receptor is an ozone sensor in human skin //Journal of investigative dermatology.– 2009.– V. 129.– № . 10.– P. 2396–2403. doi: 10.1038/jid.2009.85.
28. Puri P. et al. Effects of air pollution on the skin: A review //Indian journal of dermatology, venereology and leprology.– 2017.– V. 83.– P. 415. doi: 10.4103/0378–6323.199579.
29. Belushkin M., Jaccard G., Kondylis A. Considerations for comparative tobacco product assessments based on smoke constituent yields //Regulatory Toxicology and Pharmacology.– 2015.– V. 73.– № . 1.– P. 105–113. doi: 10.1016/j.yrtph.2015.06.017.
30. Calafat A. M. et al. Determination of tar, nicotine, and carbon monoxide yields in the mainstream smoke of selected international cigarettes //Tobacco Control.– 2004.– V. 13.– № . 1.– P. 45–51. doi: 10.1136/tc.2003.003673
31. Pappas A. et al. Sebum analysis of individuals with and without acne //Dermato-endocrinology.– 2009.– V. 1.– № . 3.– P. 157–161. doi: 10.4161/derm.1.3.8473.
32. Capitanio B. et al. Modulation of sebum oxidation and interleukin-1α levels associates with clinical improvement of mild comedonal acne //Journal of the European Academy of Dermatology and Venereology.– 2014.– V. 28.– № . 12.– P. 1792–1797. doi: 10.1111/jdv.12431.
33. Deliaert A. E. K. et al. Smoking and its effect on scar healing //European journal of plastic surgery.– 2012.– V. 35.– P. 421–424. doi: 10.1007/s00238–011–0661–3.
34. Meyer K. et al. Evaluation of Seasonal Changes in Facial Skin With and Without Acne //Journal of Drugs in Dermatology: JDD.– 2015.– V. 14.– № . 6.– P. 593–601.
35. Piquero-Casals J. et al. Sun exposure, a relevant exposome factor in acne patients and how photoprotection can improve outcomes //Journal of Cosmetic Dermatology.– 2023.– V. 22.– № . 6.– P. 1919–1928. doi: 10.1111/jocd.15726.
36. Sardana K., Sharma R. C., Sarkar R. Seasonal variation in acne vulgaris – myth or reality //The Journal of dermatology.– 2002.– V. 29.– № . 8.– P. 484–488. doi: 10.1111/j.1346–8138.2002.tb00313.x.
37. Narang I. et al. Seasonal aggravation of acne in summers and the effect of temperature and humidity in a study in a tropical setting //Journal of cosmetic dermatology.– 2019.– V. 18.– № . 4.– P. 1098–1104. doi: 10.1111/jocd.12777.
38. Albuquerque R.G. R. et al. Could adult female acne be associated with modern life? //Archives of dermatological research.– 2014.– V. 306.– P. 683–688. doi: 10.1007/s00403–014–1482–6.
39. Taheri M. et al. Exposure to visible light emitted from smartphones and tablets increases the proliferation of Staphylococcus aureus: can this be linked to acne? //Journal of biomedical physics & engineering.– 2017.– V. 7.– № . 2.– P. 163.
40. Toyoda M., Nakamura M., Morohashi M. Neuropeptides and sebaceous glands //European Journal of Dermatology.– 2002.– V. 12.– № . 5.– P. 422–7.
41. Chiu A., Chon S. Y., Kimball A. B. The response of skin disease to stress: changes in the severity of acne vulgaris as affected by examination stress //Archives of dermatology.– 2003.– V. 139.– № . 7.– P. 897–900. doi: 10.1001/archderm.139.7.897.
42. Toyoda M. et al. Sebaceous glands in acne patients express high levels of neutral endopeptidase //Experimental dermatology.– 2002.– V. 11.– № . 3.– P. 241–247. doi: 10.1034/j.1600–0625.2002.110307.x.
43. Lotti T., Bianchi B., Panconesi E. Neuropeptides and skin disorders. The new frontiers of neuro–endocrine–cutaneous immunology //International journal of dermatology.– 1999.– V. 38.– № . 9.– P. 673–675. doi: 10.1046/j.1365–4362.1999.00767.x.
44. Ganceviciene R. et al. Involvement of the corticotropin-releasing hormone system in the pathogenesis of acne vulgaris //British Journal of Dermatology.– 2009.– V. 160.– № . 2.– P. 345–352. doi: 10.1111/j.1365–2133.2008.08959.x.
45. He H. et al. Association of brain-derived neurotrophic factor levels and depressive symptoms in young adults with acne vulgaris //BMC psychiatry.– 2019.– V. 19.– № . 1.– P. 1–8. doi: 10.1186/s12888–019–2182–8.
Рецензия
Для цитирования:
Грязева Н.В., Безбородова А.В., Казарян В.Э., Круглова М.С. Влияние экспозом-факторов на течение акне. Медицинский алфавит. 2024;(9):31-37. https://doi.org/10.33667/2078-5631-2024-9-31-37
For citation:
Gryazeva N.V., Bezborodova A.V., Kazaryan V.E., Kruglova M.S. The effect of exposure factors on acne. Medical alphabet. 2024;(9):31-37. (In Russ.) https://doi.org/10.33667/2078-5631-2024-9-31-37