Preview

Медицинский алфавит

Расширенный поиск

Роль спекл-трэкинг – эхокардиографии в современной диагностике и прогнозе при коронарной недостаточности

https://doi.org/10.33667/2078-5631-2023-16-7-18

Аннотация

Эхокардиография является одним из первоочередных методов диагностики ишемической болезни сердца (ИБС), оценки ближайшего и отдаленного прогнозов. Однако визуальное определение аномального движения стенок миокарда левого желудочка (ЛЖ) не всегда позволяет выявить скрытую или транзиторную ишемию миокарда и провести дифференциальную диагностику с другими заболеваниями, сопровождаемыми нарушениями сократимости. В этой связи спекл-трекинг – эхокардиография (СТЭ) является широкодоступным неинвазивным методом, который может легко и быстро предоставить уточняющую информацию и значительно дополнить стандартное эхокардиографическое исследование, так как позволяет выявить малозаметные повреждения миокарда и локальные зоны ишемии, соответствующие картине коронарного поражения, с получением важной уточняющей информации в виде наглядной схемы, весьма простой в использовании для дифференциальной диагностики и лечения. Поэтому метод, все чаще используемый при различных проявлениях коронарной недостаточности, в том числе при врожденных аномалиях кровоснабжения сердца, и удобный в применении как в покое, так и вместе со стресс-эхокардиографией, демонстрирует хорошие результаты с точки зрения диагностики и прогнозирования ИБС, количественной интерпретации появившейся или сохраняющейся ишемии, оценки клинического течения, исхода и ремоделирования ЛЖ. Ниже мы попытались отразить имеющиеся в настоящее время данные о значении СТЭ для оценки и последующего наблюдения острых и хронических форм ИБС, коснуться основных достижений и открытий в использовании параметров двумерной и трехмерной деформации и их потенциального применения для более широкого внедрения метода в клиническую практику.

Об авторах

Л. Г. Тюрина
ГБУЗ г. Москвы «Научно-исследовательский институт скорой помощи имени Н. В. Склифосовского Департамента здравоохранения Москвы»
Россия

Тюрина Ляля Георгиевна, врач отделения ультразвуковой диагностики

Москва



Л. Т. Хамидова
ГБУЗ г. Москвы «Научно-исследовательский институт скорой помощи имени Н. В. Склифосовского Департамента здравоохранения Москвы»
Россия

Хамидова Лайла Тимарбековна, д. м. н., рук. отдела лучевой диагностики

Москва

РИНЦ ID: 968715



Н. В. Рыбалко
ГБУЗ г. Москвы «Научно-исследовательский институт скорой помощи имени Н. В. Склифосовского Департамента здравоохранения Москвы»
Россия

Рыбалко Наталья Владимировна, д. м. н., в. н. с. отделения ультразвуковой и функциональной диагностики

Москва

РИНЦ ID: 507463



Г. А. Газарян
ГБУЗ г. Москвы «Научно-исследовательский институт скорой помощи имени Н. В. Склифосовского Департамента здравоохранения Москвы»
Россия

Газарян Георгий Арташесович, д. м. н., проф., зав. отделением неотложной кардиологии с методами неинвазивной функциональной диагностики

Москва



К. А. Попугаев
ГБУЗ г. Москвы «Научно-исследовательский институт скорой помощи имени Н. В. Склифосовского Департамента здравоохранения Москвы»
Россия

Попугаев Константин Александрович, д. м. н., зам. директора, рук.
регионального сосудистого центра

Москва

РИНЦ ID: 582947



Список литературы

1. Медведев П. И., Алехин М. Н., Сидоренко Б. А. Диагностические возможности cпекл-трекинг эхокардиографии у больных ишемической болезнью сердца. Кардиология. 2016; 56 (2): 79–84. http://doi.org/10.18565/cardio.2016.2.79–84

2. Pastore M. C., Mandoli G. E., Aboumarie H. S., Santoro C., Bandera F., D’Andrea A. et al. Basic and advanced echocardiography in advanced heart failure: an overview. Heart Fail Rev. 2020; 25 (6): 937–948. http://doi.org/10.1007/s10741–019–09865–3

3. Morris D. A., Ma X.-X., Belyavskiy E., Kumar R. A., Kropf M., Kraft R. et al. Left ventricular longitudinal systolic function analysed by 2D speckle-tracking echocardiography in heart failure with preserved ejection fraction: A meta-analysis. Open Heart. 2017; 4 (2): e000630. http://doi.org/10.1136/openhrt‑2017–000630

4. Buccheri S., Monte I., Mangiafico S., Bottari V., Leggio S., Tamburino C. Feasibility, reproducibility, and agreement between different speckle tracking echocardiographic techniques for the assessment of longitudinal deformation. BioMed Res Int. 2013; 2013: 297895. http://doi.org/10.1155/2013/297895

5. Takeuchi M., Wu V. C. Application of left ventricular strain to patients with coronary artery disease. Curr Opin Cardiol. 2018; 33 (5): 464–469. http://doi.org/10.1097/HCO.0000000000000536

6. Cameli M., Mandoli G. E., Sciaccaluga C., Mondillo S. More than 10 years of speckle tracking echocardiography: Still a novel technique or a definite tool for clinical practice? Echocardiography. 2019; 36 (5): 958–970. http://doi.org/10.1111/echo.14339

7. Mandoli G. E., Pastore M. C., Vassiljevaite K., Cameli P., D’Ascenzi F., Focardi M, et al. Speckle tracking stress echocardiography: A valuable diagnostic technique or a burden for everyday practice? Echocardiography. 2020; 37 (12): 2123–2129. http://doi.org/10.1111/echo.14894

8. Cameli M., Mondillo S., Righini F. M., Lisi M., Dokollari A., Lindqvist P., et al. Left ventricular deformation and myocardial fibrosis in patients with advanced heart failure requiring transplantation. J Card Fail. 2016; 22 (11): 901–907. http://doi.org/10.1016/j.cardfail.2016.02.012

9. Collet J.-P., Thiele H., Barbato E., Barthélémy O., Bauersachs J., Bhatt D. L., et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021; 42 (14): 1289–1367. http://doi.org/10.1093/eurheartj/ehaa575

10. Knuuti J., Wijns W., Saraste A., Capodanno D., Barbato E., Funck-Brentano C. et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020; 41 (3): 407–477. http://doi.org/10.1093/eurheartj/ehz425

11. Schroeder J., Hamada S., Gründlinger N., Rubeau T., Altiok E., Ulbrich K. et al. Myocardial deformation by strain echocardiography identifies patients with acute coronary syndrome and nondiagnostic ECG presenting in a chest pain unit: A prospective study of diagnostic accuracy. Clin Res Cardiol. 2015; 105 (3): 248–256. http://doi.org/10.1007/s00392–015–0916–2

12. Liou K., Negishi K., Ho S., Russell E. A., Cranney G., Ooi S. Y. Detection of obstructive coronary artery disease using peak systolic global longitudinal strain derived by twodimensional speckle-tracking: A systematic review and metaanalysis. J Am Soc Echocardiogr. 2016; 29 (8): 724–735.e4. http://doi.org/10.1016/j.echo.2016.03.002

13. Zito C., Longobardo L., Citro R., Galderisi M., Oreto L., Carerj M. L. et al. Ten years of 2D longitudinal strain for early myocardial dysfunction detection: A clinical overview. BioMed Res Int. 2018; 2018: 8979407. http://doi.org/10.1155/2018/8979407

14. Carrabba N., Migliorini A., Pradella S., Acquafresca M., Guglielmo M., Baggiano A. et al. Old and new NICE guidelines for the evaluation of new onset stable chest pain: A real world perspective. BioMed Res Int. 2018; 2018: 3762305. http://doi.org/10.1155/2018/3762305

15. Catalano O., Moro G., Mori A., Perotti M., Gualco A., Frascaroli M. et al. Cardiac magnetic resonance in stable coronary artery disease: Added prognostic value to conventional risk profiling. BioMed Res Int. 2018; 2018:2806148. http://doi.org/10.1155/2018/2806148

16. Carrabba N., Berteotti M., Taborchi G., Ciatti F., Acquafresca M., Moroni M. et al. Integration of CTA in the diagnostic workup of new onset chest pain in clinical practice. BioMed Res Int. 2019; 2019: 2647079. http://doi.org/10.1155/2019/2647079

17. Bertini M., Mollema S. A., Delgado V., Antoni M. L., Ng A. C.T., Holman E. R. et al. Impact of time to reperfusion after acute myocardial infarction on myocardial damage assessed by left ventricular longitudinal strain. Am J Cardiol. 2009; 104 (4): 480–485. http://doi.org/10.1016/j.amjcard.2009.04.010

18. Sjøli B., Ørn S., Grenne B., Ihlen H., Edvardsen T., Brunvand H. Diagnostic capability and reproducibility of strain by Doppler and by speckle tracking in patients with acute myocardial infarction. JACC Cardiovasc Imaging. 2009; 2 (1): 24–33. http://doi.org/10.1016/j.jcmg.2008.10.007

19. Lacalzada J., de la Rosa A., Izquierdo M. M., Jiménez J. J., Iribarren J. L., García-González M.J. et al. Left ventricular global longitudinal systolic strain predicts adverse remodeling and subsequent cardiac events in patients with acute myocardial infarction treated with primary percutaneous coronary intervention. Int J Cardiovasc Imaging. 2015; 31 (3): 575–584. http://doi.org/10.1007/s10554–015–0593–2

20. Eek C., Grenne B., Brunvand H., Aakhus S., Endresen K., Smiseth O. A., et al. Strain echocardiography predicts acute coronary occlusion in patients with non-ST-segment elevation acute coronary syndrome. Eur J Echocardiogr. 2010; 11 (6): 501–508. http://doi.org/10.1093/ejechocard/jeq008

21. Mele D., Fiorencis A., Chiodi E., Gardini C., Benea G., Ferrari R. Polar plot maps by parametric strain echocardiography allow accurate evaluation of non-viable transmural scar tissue in ischaemic heart disease. Eur Heart J Cardiovasc Imaging. 2016; 17 (6): 668–677. http://doi.org/10.1093/ehjci/jev191

22. Caspar T., Samet H., Ohana M., Germain P., Ghannudi S. E., Talha S., et al. Longitudinal 2D strain can help diagnose coronary artery disease in patients with suspected non-ST-elevation acute coronary syndrome but apparent normal global and segmental systolic function. Int J Cardiol. 2017; 236: 91–94. http://doi.org/10.1016/j.ijcard.2017.02.068

23. Dahlslett T., Karlsen S., Grenne B., Eek C., Sjøli B., Skulstad H. et al. Early assessment of strain echocardiography can accurately exclude significant coronary artery stenosis in suspected non-ST-segment elevation acute coronary syndrome. J Am Soc Echocardiogr. 2014; 27 (5): 512–519. http://doi.org/10.1016/j.echo.2014.01.019

24. Atici A., Barman H. A., Durmaz E., Demir K., Cakmak R., Tugrul S. et al. Predictive value of global and territorial longitudinal strain imaging in detecting significant coronary artery disease in patients with myocardial infarction without persistent ST-segment elevation. Echocardiography. 2019; 36 (3): 512–520. http://doi.org/10.1111/echo.14275

25. Diao K. Y., Yang Z. G., Ma M., He Y., Zhao Q., Liu X. et al. The diagnostic value of global longitudinal strain (GLS) on myocardial infarction size by echocardiography: A systematic review and meta-analysis. Sci Rep. 2017; 7 (1): 10082. http://doi.org/10.1038/s41598–017–09096–2

26. Nucifora G., Marsan N. A., Bertini M., Delgado V., Siebelink H.-M.J., van Werkhoven J. M. et al. Reduced left ventricular torsion early after myocardial infarction is related to left ventricular remodeling. Circ Cardiovasc Imaging. 2010; 3 (4): 433–442. http://doi.org/10.1161/circimaging.109.926196

27. Knudtson M. L., Galbraith P. D., Hildebrand K. L., Tyberg J. V., Beyar R. Dynamics of left ventricular apex rotation during angioplasty: a sensitive index of ischemic dysfunction. Circulation. 1997; 96 (3): 801–808. http://doi.org/10.1161/01.cir.96.3.801

28. Huang J., Yan Z. N., Fan L., Rui Y. F., Song X. T. Left ventricular longitudinal function assessment in rabbits after acute occlusion of left anterior descending coronary artery by two-dimensional speckle tracking imaging. BMC Cardiovasc Disord. 2017; 17 (1): 219. http://doi.org/10.1186/s12872–017–0655–6

29. Spinelli L., Morisco C., di Panzillo E. A., Izzo R., Trimarco B. Reverse left ventricular remodeling after acute myocardial infarction: The prognostic impact of left ventricular global torsion. Int J Cardiovasc Imaging. 2013; 29 (4): 787–795. http://doi.org/10.1007/s10554–012–0159–5

30. Zhang M., Yang J., Ma C., Liu M. Longitudinal strain measured by two-dimensional speckle tracking echocardiography to evaluate left ventricular function in patients with myocardial bridging of the left anterior descending coronary artery. Echocardiography. 2019; 36 (6): 1066–1073. http://doi.org/10.1111/echo.14357

31. Laborde C. R., Delmas C., Mialet-Perez J., Pizzinat N., Biendel-Picquet C., Boudou N. et al. First evidence of increased plasma serotonin levels in Tako-Tsubo cardiomyopathy. BioMed Res Int. 2013; 2013: 847069. http://doi.org/10.1155/2013/847069

32. Moscatelli S., Montecucco F., Carbone F., Valbusa A., Massobrio L., Porto I. et al. An emerging cardiovascular disease: Takotsubo syndrome. BioMed Res Int. 2019; 2019: 6571045. http://doi.org/10.1155/2019/6571045

33. Wan S.-H., Liang J. J. Takotsubo cardiomyopathy: etiology, diagnosis, and optimal management. Res Report Clin Cardiology. 2014; 5: 297–303. http://doi.org/10.2147/rrcc.s46021

34. Ghadri J. R., Wittstein I. S., Prasad A., Sharkey S., Dote K., Akashi Y. J. et al. International expert consensus document on takotsubo syndrome (Part II): Diagnostic workup, outcome, and management. Eur Heart J. 2018; 39 (22): 2047–2062. http://doi.org/10.1093/eurheartj/ehy077

35. Meimoun P., Abouth S., Boulanger J., Luycx-Bore A., Martis S., Clerc J. Relationship between acute strain pattern and recovery in Takotsubo cardiomyopathy and acute anterior myocardial infarction: A comparative study using two-dimensional longitudinal strain. Int J Cardiovasc Imaging. 2014; 30 (8): 1491–1500. http://doi.org/10.1007/s10554–014–0494–9

36. Mahjoob M. P., Parsa S. A., Mazarei A., Safi M., Khaheshi I., Esmaeeli S. Rest 2D speckle tracking echocardiography may be a sensitive but nonspecific test for detection of significant coronary artery disease. Acta Biomed. 2018; 88 (4): 457–461. http://doi.org/10.23750/abm.v88i4.5445

37. Hagemann C. A., Hoffmann S., Hagemann R. A., Fritz-Hansen T., Olsen F. J., Jørgensen P. G. et al. Usefulness of layer-specific strain in diagnosis of coronary artery disease in patients with stable angina pectoris. Int J Cardiovasc Imaging. 2019; 35 (11): 1989–1999. http://doi.org/10.1007/s10554–019–01652–3

38. Choi J. O., Cho S. W., Song Y. B., Cho S. J., Song B. G., Lee S.-C. et al. Longitudinal 2D strain at rest predicts the presence of left main and three vessel coronary artery disease in patients without regional wall motion abnormality. Eur J Echocardiogr. 2009; 10 (5): 695–701. http://doi.org/10.1093/ejechocard/jep041

39. Moustafa S., Elrabat K., Swailem F., Galal A. The correlation between speckle tracking echocardiography and coronary artery disease in patients with suspected stable angina pectoris. Indian Heart J. 2018; 70 (3): 379–386. http://doi.org/10.1016/j.ihj.2017.09.220

40. Zuo H. J., Yang X. T., Liu Q. G., Zhang Y., Zeng H.-S., Yan J.-T. et al. Global longitudinal strain at rest for detection of coronary artery disease in patients without diabetes mellitus. Curr Med Sci. 2018; 38 (3): 413–421. http://doi.org/10.1007/s11596–018–1894–1

41. Radwan H., Hussein E. Value of global longitudinal strain by two-dimensional speckle tracking echocardiography in predicting coronary artery disease severity. Egypt Heart J. 2017; 69 (2): 95–101. http://doi.org/10.1016/j.ehj.2016.08.001

42. Vrettos A., Dawson D., Grigoratos C., Nihoyannopoulos P. Correlation between global longitudinal peak systolic strain and coronary artery disease severity as assessed by the angiographically derived SYNTAX score. Echo Res Pract. 2016; 3 (2): 29–34. http://doi.org/10.1530/ERP‑16–0005

43. Xie M. Y., Lv Q., Wang J., Yin J.-B. Assessment of myocardial segmental function with coronary artery stenosis in multi-vessel coronary disease patients with normal wall motion. Eur Rev Med Pharmacol Sci. 2016; 20 (8): 1582–1589.

44. Biering-Sørensen T., Hoffmann S., Mogelvang R., Iversen A. Z., Galatius S., Fritz-Hansen T. et al. Myocardial strain analysis by 2-dimensional speckle tracking echocardiography improves diagnostics of coronary artery stenosis in stable angina pectoris. Circ Cardiovasc Imaging. 2014; 7 (1): 58–65. http://doi.org/10.1161/circimaging.113.000989

45. Anwar A. M. Accuracy of two-dimensional speckle tracking echocardiography for the detection of significant coronary stenosis. J Cardiovasc Ultrasound. 2013; 21 (4): 177–182. http://doi.org/10.4250/jcu.2013.21.4.177

46. Науменко Е. П. Возможности спекл-трекинг эхокардиографии в оценке распространенности ишемического поражения миокарда вследствие коронарного атеросклероза у пациентов со стабильной стенокардией напряжения II–III функционального класса и сахарным диабетом 2 типа. Проблемы здоровья и экологии. 2015; 4 (46): 49–54.

47. Zuo H., Yan J., Zeng H., Li W., Li P., Liu Z. et al. Diagnostic power of longitudinal strain at rest for the detection of obstructive coronary artery disease in patients with type 2 diabetes mellitus. Ultrasound Med Biol. 2015; 41 (1): 89–98. http://doi.org/10.1016/j.ultrasmedbio.2014.08.011

48. Liu C., Li J., Ren M., Wang Z.-Z., Li Z.-Y., Gao F. et al. Multilayer longitudinal strain at rest may help to predict significant stenosis of the left anterior descending coronary artery in patients with suspected non-ST-elevation acute coronary syndrome. Int J Cardiac Imaging. 2016; 32 (12): 1675–1685. http://doi.org/10.1007/s10554–016–0959–0

49. Becker M., Ocklenburg C., Altiok E., Füting A., Balzer J., Krombach G. et al. Impact of infarct transmurality on layer-specific impairment of myocardial function: A myocardial deformation imaging study. Eur Heart J. 2009; 30 (12): 1467–1476. http://doi.org/10.1093/eurheartj/ehp112

50. Altiok E., Neizel M., Tiemann S., Krass V., Becker M., Zwicker C. et al. Layer-specific analysis of myocardial deformation for assessment of infarct transmurality: Comparison of strain encoded cardiovascular magnetic resonance with 2D speckle tracking echocardiography. Eur Heart J Cardiovasc Imaging. 2013; 14 (6): 570–578. http://doi.org/10.1093/ehjci/jes229

51. Tarascio M., Leo L. A., Klersy C., Murzilli R., Moccetti T., Faletra F. F. Speckle-tracking layer-specific analysis of myocardial deformation and evaluation of scar transmurality in chronic ischemic heart disease. J Am Soc Echocardiogr. 2017; 30 (7): 667–675. http://doi.org/10.1016/j.echo.2017.03.015

52. Cameli M., Bombardini T., Dokollari A., Sassi C. G., Losito M., Sparla S. et al. Longitudinal strain stressecho evaluation of aged marginal donor hearts: feasibility in the Adonhers project. Transplant Proc. 2016; 48 (2): 399–401. http://doi.org/10.1016/j.transproceed.2015.12.036

53. Gaibazzi N., Pigazzani F., Reverberi C., Porter T. R. Rest global longitudinal 2D strain to detect coronary artery disease in patients undergoing stress echocardiography: A comparison with wall-motion and coronary flow reserve responses. Echo Res Pract. 2014; 1 (2): 61–70. http://doi.org/10.1530/ERP‑14–0020

54. Rumbinaite E., Zaliaduonyte-Peksiene D., Lapinskas T., Zvirblyte R., Karuzas A., Jonauskiene I. et al. Early and late diastolic strain rate vs global longitudinal strain at rest and during dobutamine stress for the assessment of significant coronary artery stenosis in patients with a moderate and high probability of coronary artery disease. Echocardiography. 2016; 33 (10): 1512–1522. http://doi.org/10.1111/echo.13282

55. Rumbinaitė E., Žaliaduonytė-Pekšienė D., Vieželis M., Čeponienė I., Lapinskas T., Žvirblytė R. et al. Dobutamine-stress echocardiography speckle-tracking imaging in the assessment of hemodynamic significance of coronary artery stenosis in patients with moderate and high probability of coronary artery disease. Medicina. 2016; 52 (6): 331–339. http://doi.org/10.1016/j.medici.2016.11.005

56. Павлюкова Е. Н., Егорова В. Ю. Анализ деформации миокарда в режиме Strain и Strain rate при стресс-эхокардиографии с добутамином в зависимости от степени стеноза коронарных артерий. Сибирский медицинский журнал. 2008; 23 (4–2): 7–10.

57. Кучмин А. Н., Ярославцев М. Ю., Афендиков Н. В., Галова Е. П., Евсюков К. Б., Морозов С. Л. и др. Применение методики пространственного смещения структуры миокарда (спекл-трекинг) для определения показаний к проведению коронароангиографии у пациентов, страдающих ишемической болезнью сердца. Вестник Российской Военно-медицинской академии. 2020; 2 (70): 70–73.

58. Uusitalo V., Luotolahti M., Pietilä M., Wendelin-Saarenhovi M., Hartiala J., Saraste M. et al. Two-dimensional speckle-tracking during dobutamine stress echocardiography in the detection of myocardial ischemia in patients with suspected coronary artery disease. J Am Soc Echocardiogr. 2016; 29 (5): 470–479. http://doi.org/10.1016/j.echo.2015.12.013

59. Park J. H., Woo J. S., Ju S., Jung S. W., Lee I., Kim J. B. et al. Layer-specific analysis of dobutamine stress echocardiography for the evaluation of coronary artery disease. Medicine. 2016; 95 (32): e4549. http://doi.org/10.1097/md.0000000000004549

60. Ejlersen J. A., Poulsen S. H., Mortensen J., May O. Diagnostic value of layer-specific global longitudinal strain during adenosine stress in patients suspected of coronary artery disease. Int J Cardiovasc Imaging. 2017; 33 (4): 473–480. http://doi.org/10.1007/s10554–016–1022-x

61. Loncarevic B., Trifunovic D., Soldatovic I., VujisicTesic B. Silent diabetic cardiomyopathy in everyday practice: a clinical and echocardiographic study. BMC Cardiovasc Disord. 2016; 16 (1): 242. http://doi.org/10.1186/s12872–016–0395-z

62. Hubbard R. T., Calle M. C.A., Barros-Gomes S., Kukuzke J. A., Pellikka P. A., Gulati R. et al. 2-Dimensional speckle tracking echocardiography predicts severe coronary artery disease in women with normal left ventricular function: A case-control study. BMC Cardiovasc Disord. 2017; 17 (1): 231. http://doi.org/10.1186/s12872–017–0656–5

63. Mandoli G. E., Cameli M., Minardi S., Crudele F., Lunghetti S., Mondillo S. Layer-specific strain in dipyridamole stress echo: a new tool for the diagnosis of microvascular angina. Echocardiography. 2018; 35 (12): 2005–2013. http://doi.org/10.1111/echo.14180

64. Smiseth O. A., Torp H., Opdahl A., Haugaa K. H., Urheim S. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J. 2016; 37 (15): 1196–1207. http://doi.org/10.1093/eurheartj/ehv529

65. Алехин М. Н., Степанова А. И. Эхокардиография в оценке постсистолического укорочения миокарда левого желудочка сердца. Кардиология. 2020; 60(12): 110–116. https: // doi.org/10.18087/cardio.2020.12.n1087

66. Cameli M., Mondillo S., Galderisi M., Mandoli G. E., Ballo P., Nistri S. et al. Speckle tracking echocardiography: A practical guide. G Ital Cardiol. 2017; 18 (4): 253–269. https://doi.org/10.1714/2683.27469

67. Shimoni S., Gendelman G., Ayzenberg O., Smirin N., Lysyansky P., Edri O. et al. Differential effects of coronary artery stenosis on myocardial function: the value of myocardial strain analysis for the detection of coronary artery disease. J Am Soc Echocardiogr. 2011; 24 (7): 748–757. https://doi.org/10.1016/j.echo.2011.03.007

68. Brainin P., Hoffmann S., Fritz-Hansen T., Olsen F. J., Jensen J. S., Biering-Sørensen T. Usefulness of postsystolic shortening to diagnose coronary artery disease and predict future cardiovascular events in stable angina pectoris. J Am Soc Echocardiogr. 2018; 31 (8): 870–879. e3. https://doi.org/10.1016/j.echo.2018.05.007

69. Asanuma T., Nakatani S. Myocardial ischaemia and postsystolic shortening. Heart. 2015; 101 (7): 509–516. https://doi.org/10.1136/heartjnl‑2013–305403

70. Pastore M. C., De Carli G., Mandoli G. E., D’Ascenzi F., Focardi M., Contorni F. et al. The prognostic role of speckle tracking echocardiography in clinical practice: Evidence and reference values from the literature. Heart Fail Rev. 2021; 26 (6): 1371–1381. https://doi.org/10.1007/s10741–020–09945–9

71. Choi S. W., Park J. H., Sun B. J., Park Y., Kim Y. J., Lee I. S. et al. Impaired two-dimensional global longitudinal strain of left ventricle predicts adverse long-term clinical outcomes in patients with acute myocardial infarction. Int J Cardiol. 2015; 196: 165–167. https://doi.org/10.1016/j.ijcard.2015.05.186

72. Ersbøll M., Valeur N., Mogensen U. M., Andersen M. J., Møller J. E., Velazquez E. J. et al. Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2013; 61 (23): 2365–2373. https://doi.org/10.1016/j.jacc.2013.02.061

73. D’Andrea A., Cocchia R., Caso P., Riegler L., Scarafile R., Salerno G. et al. Global longitudinal speckle-tracking strain is predictive of left ventricular remodeling after coronary angioplasty in patients with recent nonST elevation myocardial infarction. Int J Cardiol. 2011; 153 (2): 185–191. https://doi.org/10.1016/j.ijcard.2010.08.025

74. Олейников В. Э., Голубева А. В., Галимская В. А., Барменкова Ю. А., Шиготарова Е. А., Бабина А. В. Спекл-трекинг эхокардиография в ранней диагностике хронической сердечной недостаточности после инфаркта миокарда с подъемом сегмента ST. Российский кардиологический журнал. 2021; 26 (1): 29–35. https://doi.org/10.15829/1560–4071–2021–4088

75. Antoni M. L., Mollema S. A., Delgado V., Atary J. Z., Borleffs C. J., Boersma E. et al. Prognostic importance of strain and strain rate after acute myocardial infarction. Eur Heart J. 2010; 31 (13): 1640–1647. https://doi.org/10.1093/eurheartj/ehq105

76. van Mourik M. J.W., Zaar D. V.J., Smulders M. W., Heijman J., Lumens J., Dokter J. E. et al. Adding speckle-tracking echocardiography to visual assessment of systolic wall motion abnormalities improves the detection of myocardial infarction. J Am Soc Echocardiogr. 2019; 32 (1): 65–73. https://doi.org/10.1016/j.echo.2018.09.007

77. Joyce E., Hoogslag G. E., Al Amri I., Debonnaire P., Katsanos S., Bax J. J. et al. Quantitative dobutamine stress echocardiography using speckle-tracking analysis versus conventional visual analysis for detection of significant coronary artery disease after ST-segment elevation myocardial infarction. J Am Soc Echocardiogr. 2015; 28 (12): 1379–1389.e1. https://doi.org/10.1016/j.echo.2015.07.023

78. Scharrenbroich J., Hamada S., Keszei A., Schröder J., Napp A., Almalla M. et al. Use of twodimensional speckle tracking echocardiography to predict cardiac events: Comparison of patients with acute myocardial infarction and chronic coronary artery disease. Clin Cardiol. 2018; 41 (1): 111–118. https://doi.org/10.1002/clc.22860

79. Cameli M., Pastore M. C., Henein M. Y., Mondillo S. The left atrium and the right ventricle: two supporting chambers to the failing left ventricle. Heart Fail Rev. 2019; 24 (5): 661–669. https://doi.org/10.1007/s10741–019–09791–4

80. Mandoli G. E., Pastore M. C., Benfari G., Bisleri G., Maccherini M., Lisi G. et al. Left atrial strain as a pre-operative prognostic marker for patients with severe mitral regurgitation. Int J Cardiol. 2021; 324: 139–145. https://doi.org/10.1016/j.ijcard.2020.09.009

81. Ikejder Y., Sebbani M., Hendy I., Khramz M., Khatouri A., Bendriss L. Impact of arterial hypertension on left atrial size and function. BioMed Res Int. 2020; 2020: 2587530. https://doi.org/10.1155/2020/2587530

82. Cameli M., Miglioranza M. H., Magne J., Mandoli G. E., Benfari G., Ancona R. et al. Multicentric atrial strain comparison between two different modalities: MASCOT HIT study. Diagnostics. 2020; 10 (11): 946. https://doi.org/10.3390/diagnostics10110946

83. Lee D. H., Park T. H., Lee J. E., Cho Y.-R., Park K., Park J. S., et al. Left atrial function assessed by left atrial strain in patients with left circumflex branch culprit acute myocardial infarction. Echocardiography. 2015; 32 (7): 1094–1100. https://doi.org/10.1111/echo.12828

84. Said K. M., Nassar A. I., Fouad A., Ramzy A. A., Abd Allah M. F.F. Left atrial deformation analysis as a predictor of severity of coronary artery disease. Egypt Heart J. 2018; 70 (4): 353–359. https://doi.org/10.1016/j.ehj.2018.09.004

85. Antoni M. L., ten Brinke E. A., Atary J. Z., Marsan N. A., Holman E. R., Schalij M. J. et al. Left atrial strain is related to adverse events in patients after acute myocardial infarction treated with primary percutaneous coronary intervention. Heart. 2011; 97 (16): 1332–1337. https://doi.org/10.1136/hrt.2011.227678

86. Meimoun P., Stracchi V., Boulanger J., Martis S., Botoro T., Zemir H. et al. The left atrial function is transiently impaired in Takotsubo cardiomyopathy and associated to in-hospital complications: A prospective study using two-dimensional strain. Int J Cardiovasc Imaging. 2020; 36 (2): 299–307. https://doi.org/10.1007/s10554–019–01722–6

87. Chang W. T., Tsai W. C., Liu Y. W., Lee C. H., Liu P. Y., Chen J. Y. et al. Changes in right ventricular free wall strain in patients with coronary artery disease involving the right coronary artery. J Am Soc Echocardiogr. 2014; 27 (3): 230–238. https://doi.org/10.1016/j.echo.2013.11.010

88. Focardi M., Cameli M., Carbone S. F., Massoni A., De Vito R., Lisi M. et al. Traditional and innovative echocardiographic parameters for the analysis of right ventricular performance in comparison with cardiac magnetic resonance. Eur Heart J Cardiovasc Imaging. 2015; 16 (1): 47–52. https://doi.org/10.1093/ehjci/jeu156

89. Rallidis L. S., Makavos G., Nihoyannopoulos P. Right ventricular involvement in coronary artery disease: Role of echocardiography for diagnosis and prognosis. J Am Soc Echocardiogr. 2014; 27 (3): 223–229. https://doi.org/10.1016/j.echo.2013.12.001

90. Park S. J., Park J.-H., Lee H. S., Kim M. S., Park Y. K., Park Y. et al. Impaired RV global longitudinal strain is associated with poor long-term clinical outcomes in patients with acute inferior STEMI. JACC Cardiovasc Imaging. 2015; 8 (2): 161–169. https://doi.org/10.1016/j.jcmg.2014.10.011

91. Antoni M. L., Scherptong R. W., Atary J. Z., Boersma E., Holman E. R., van der Wall.EE. et al. Prognostic value of right ventricular function in patients after acute myocardial infarction treated with primary percutaneous coronary intervention. Circ Cardiovasc Imaging. 2010; 3 (3): 264–271. https://doi.org/10.1161/circimaging.109.914366

92. Iwahashi N., Kirigaya J., Abe T., Horii M., Toya N., Hanajima Y. et al. Impact of three-dimensional global longitudinal strain for patients with acute myocardial infarction. Eur Heart J Cardiovasc Imaging. 2020; jeaa241. https://doi.org/10.1093/ehjci/jeaa241

93. Zhong J., Liu P., Li S., Huang X., Zhang Q., Huang J. et al. A comparison of three-dimensional speckle tracking echocardiography parameters in predicting left ventricular remodeling. J Healthc Eng. 2020; 2020: 8847144. https://doi.org/10.1155/2020/8847144

94. Biswas A. K., Haque T., Banik D., Choudhury S. R., Khan S. R., Malik F. T. Identification of significant coronary artery disease in patients with non-ST segment elevation acute coronary syndrome by myocardial strain analyses using three-dimensional speckle tracking echocardiography. Echocardiography. 2018; 35 (12): 1988–1996. https://doi.org/10.1111/echo.14181

95. Dogdus M., Simsek E., Cinar C. S. 3D-speckle tracking echocardiography for assessment of coronary artery disease severity in stable angina pectoris. Echocardiography. 2019; 36 (2): 320–327. https://doi.org/10.1111/echo.14214

96. Саидова М. А., Сохибназарова В. Х., Авалян А. А., Терещенко С. Н. Сравнительная оценка применения технологий спекл-трекинг эхокардиографии в двухмерном и трехмерном режимах у больных с хронической сердечной недостаточностью с сохранной и сниженной систолической функцией левого желудочка. Кардиологичексий вестник. 2020; 1: 64–70. https://doi.org/10.36396/MS.2020.16.1.009


Рецензия

Для цитирования:


Тюрина Л.Г., Хамидова Л.Т., Рыбалко Н.В., Газарян Г.А., Попугаев К.А. Роль спекл-трэкинг – эхокардиографии в современной диагностике и прогнозе при коронарной недостаточности. Медицинский алфавит. 2023;(16):7-18. https://doi.org/10.33667/2078-5631-2023-16-7-18

For citation:


Tyurina L.G., Khamidova L.T., Ryubalko N.V., Gazaryan G.A., Popugaev K.A. Role of speckle-tracking echocardiography in diagnosis and further prognosis of coronary heart disease. Medical alphabet. 2023;(16):7-18. (In Russ.) https://doi.org/10.33667/2078-5631-2023-16-7-18

Просмотров: 347


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)