Предикторы перехода ремиттирующего рассеянного склероза во вторично-прогрессирующий
https://doi.org/10.33667/2078-5631-2023-14-40-44
Аннотация
В настоящее время рассеянный склероз (РС) является второй по частоте причиной инвалидизации лиц молодого возраста после травмы [1]. Примерно 85 % пациентов с РС имеют ремиттирующее течение, которое в половине случаев в течение 15–20 лет переходит в неуклонное прогрессирование с сохранением активности или без нее в виде обострений или новых активных очагов. Диагностика вторично-прогрессирующего РС (ВПРС) затруднена, и диагноз ВПРС ставится ретроспективно. Поэтому мы в нашей статье рассматриваем варианты надежных и объективных биомаркеров, которые служат предикторами конверсии и являются источниками для перспективного прогнозирования заболевания.
Об авторах
М. А. УрбанРоссия
Урбан Мария Анатольевна - аспирант кафедры неврологии, нейрохирургии и медицинской генетики.
Ижевск
Н. В. Комиссарова
Россия
Комиссарова Наталия Валерьевна - кандидат медицинских наук, заведующий кафедрой неврологии, нейрохирургии и медицинской генетики.
Ижевск
И. И. Хазиева
Россия
Хазиева Илюса Ильсуровна - студентка V курса лечебного факультета.
Ижевск
И. И. Шамсутдинова
Россия
Шамсутдинова Ильнара Илсуровна - студентка V курса лечебного факультета.
Ижевск
Список литературы
1. Sawcer S, Franklin RJ, Ban M. Multiple sclerosis genetics. Lancet Neurol. (2014) 13: 700–9. https://doi.org/10.1016/s1474–4422(14)70041–9
2. Belbasis L, Bellou V, Evangelou E, Ioannidis JP, Tzoulaki I. Environmental risk factors and multiple sclerosis: An umbrella review of systematic reviews and meta-analyses. Lancet Neurol. (2015) 14: 263–73. https://doi.org/10.1016/s1474–4422(14)70267–4
3. Katz Sand I. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr Opin Neurol. (2015) 28: 193–205. https://doi.org/10.1097/wco.0000000000000206
4. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. (1983) 33: 1444–52. https://doi.org/10.1212/wnl.33.11.1444
5. Cadavid D, Tang Y, O'Neill G. Responsiveness of the expanded disability status scale (EDSS) to disease progression and therapeutic intervention in progressive forms of multiple sclerosis. Rev Neurol. (2010) 51: 321–9. https://doi.org/10.33588/rn.5106.2010390
6. Hyland M, Rudick RA. Challenges to clinical trials in multiple sclerosis: Outcome measures in the era of disease-modifying drugs. Curr Opin Neurol. (2011) 24: 255–61. https://doi.org/10.1097/wco.0b013e3283460542
7. Rudick RA, Polman CH, Cohen JA, Walton MK, Miller AE, Confavreux C, et al. Assessing disability progression with the multiple sclerosis functional composite. Mult Scler. (2009) 15: 984–97. https://doi.org/10.1177/1352458509106212
8. Amato MP, Fratiglioni L, Groppi C, Siracusa G, Amaducci L. Interrater reliability in assessing functional systems and disability on the Kurtzke scale in multiple sclerosis. Arch Neurol. (1988) 45: 746–8. https://doi.org/10.1001/archneur.1988.00520310052017
9. Demir S. Multiple Sclerosis Functional Composite. Noro Psikiyatr Ars. (2018) 55 (Suppl. 1): S 66–S 8. https://doi.org/10.29399/npa.23349
10. Bin Sawad A, Seoane-Vazquez E, Rodriguez-Monguio R, Turkistani F. Evaluation of the expanded disability status scale and the multiple sclerosis functional composite as clinical endpoints in multiple sclerosis clinical trials: Quantitative meta-analyses. Curr Med Res Opin. (2016) 32: 1969–74. https://doi.org/10.1080/03007995.2016.1222516
11. Cadavid D, Cohen JA, Freedman MS, Goldman MD, Hartung HP, Havrdova E, et al. The EDSS-Plus, an improved endpoint for disability progression in secondary progressive multiple sclerosis. Mult Scler. (2017) 23: 94–105. https://doi.org/10.1177/1352458516638941
12. Kragt JJ, van der Linden FA, Nielsen JM, Uitdehaag BM, Polman CH. Clinical impact of 20 % worsening on timed 25-foot walk and 9-hole peg test in multiple sclerosis. Mult Scler. (2006) 12: 594–8. https://doi.org/10.1177/1352458506070768
13. Bosma LV, Kragt JJ, Brieva L, Khaleeli Z, Montalban X, Polman CH, et al. Progression on the multiple sclerosis functional composite in multiple sclerosis: what is the optimal cut-off for the three components? Mult Scler. (2010) 16: 862–7. https://doi.org/10.1177/1352458510370464
14. Rudick RA, Cutter G, Reingold S. The multiple sclerosis functional composite: A new clinical outcome measure for multiple sderosis trials. Mult Scler. (2002) 8: 359–65. https://doi.org/10.1191/1352458502ms845oa
15. Orbach R, Zhao Z, Wang YC, O'Neill G, Cadavid D. Comparison of disease activity in SPMS and PPMS in the context of multicenter clinical trials. PLoS ONE. (2012) 7: e45409. https://doi.org/10.1371/journal.pone.0045409
16. Rosti-Otajarvi E, Hamalainen P, Koivisto K, Hokkanen L. The reliability of the MSFC and its components. Acta Neurol Scand. (2008) 117: 421–7. https://doi.org/10.1111/j.1600–0404.2007.00972
17. Solari A, Radice D, Manneschi L, Motti L, Montanari E. The multiple sclerosis functional composite: different practice effects in the three test components. J Neurol Sci. (2005) 228: 71–4. https://doi.org/10.1016/j.jns.2004.09.033
18. Cohen JA, Cutter GR, Fischer JS, Goodman AD, Heidenreich FR, Kooijmans MF, et al. Benefit of interferon beta-1a on MSFC progression in secondary progressive MS. Neurology. (2002) 59: 679–87. https://doi.org/10.1212/wnl.59.5.679
19. Kalb R, Beier M, Benedict RH, Charvet L, Costello K, Feinstein A, et al. Recommendations for cognitive screening and management in multiple sclerosis care. Mult Scler. (2018) 24: 1665–80. https://doi.org/10.1177/1352458518803785
20. Messinis L, Kosmidis MH, Lyros E, Papathanasopoulos P. Assessment and rehabilitation of cognitive impairment in multiple sclerosis. Int Rev Psychiatry. (2010) 22: 22–34. https://doi.org/10.3109/09540261003589372
21. Hojsgaard Chow H, Schreiber K, Magyari M, Ammitzboll C, Bornsen L, Romme Christensen J, et al. Progressive multiple sclerosis, cognitive function, and quality of life. Brain Behav. (2018) 8: e00875. https://doi.org/10.1002/brb3.875
22. Oreja-Guevara C, Ayuso Blanco T, Brieva Ruiz L, Hernandez Perez MA, Meca-Lallana V, Ramio-Torrenta L. Cognitive dysfunctions and assessments in multiple sclerosis. Front Neurol. (2019) 10: 581. https://doi.org/10.3389/fneur.2019.00581
23. Manca R, Stabile MR, Bevilacqua F, Cadorin C, Piccione F, Sharrack B, et al. Cognitive speed and white matter integrity in secondary progressive multiple sclerosis. Mult Scler Relat Disord. (2019) 30: 198–207. https://doi.org/10.1016/j.msard.2019.02.021
24. Eijlers AJC, van Geest Q, Dekker I, Steenwijk MD, Meijer KA, Hulst HE, et al. Predicting cognitive decline in multiple sclerosis: A 5-year follow-up study. Brain. (2018) 141: 2605–18. https://doi.org/10.1093/brain/awy202
25. Van Schependom J, D'Hooghe M B, Cleynhens K, D'Hooge M, Haelewyck MC, De Keyser J, et al. The symbol digit modalities test as sentinel test for cognitive impairment in multiple sclerosis. Eur J Neurol. (2014) 21: 1219–25. e71–2. https://doi.org/10.1111/ene.12463
26. Giordano A, Colombo B, Spinelli EG, Gelibter S, Guerrieri S, Leocani L, et al. Progressive visual function impairment as the predominant symptom of the transition phase to secondary progressive multiple sclerosis: A case report. Mult Scler Relat Disord. (2018) 24:69–71. https://doi.org/10.1016/j.msard.2018.06.011
27. Ikuta F, Zimmerman HM. Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology. (1976) 26 (6 Pt. 2): 26–8. https://doi.org/10.1212/wnl.26.6_part_2.26
28. Galetta KM, Balcer LJ. Measures of visual pathway structure and function in MS: clinical usefulness and role for MS trials. Mult Scler Relat Disord. (2013) 2: 172–82. https://doi.org/10.1016/j.msard.2012.12.004
29. Beck RW, Maguire MG, Bressler NM, Glassman AR, Lindblad AS, Ferris FL. Visual acuity as an outcome measure in clinical trials of retinal diseases. Ophthalmology. (2007) 114: 1804–9. https://doi.org/10.1016/j.ophtha.2007.06.047
30. Balcer LJ, Raynowska J, Nolan R, Galetta SL, Kapoor R, Benedict R, et al. Validity of low-contrast letter acuity as a visual performance outcome measure for multiple sclerosis. Mult Scler. (2017) 23: 734–47. https://doi.org/10.1177/1352458517690822
31. Talman LS, Bisker ER, Sackel DJ, Long DA Jr, Galetta KM, et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol. (2010) 67: 749–60. https://doi.org/10.1002/ana.22005
32. Walter SD, Ishikawa H, Galetta KM, Sakai RE, Feller DJ, Henderson SB, et al. Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology. (2012) 119: 1250–7. https://doi.org/10.1016/j.ophtha.2011.11.032
33. Reich DS, Smith SA, Gordon-Lipkin EM, Ozturk A, Caffo BS, Balcer LJ, et al. Damage to the optic radiation in multiple sclerosis is associated with retinal injury and visual disability. Arch Neurol. (2009) 66: 998–1006. https://doi.org/10.1001/archneurol.2009.107
34. Balcer LJ, Baier ML, Cohen JA, Kooijmans MF, Sandrock AW, Nano-Schiavi ML, et al. Contrast letter acuity as a visual component for the multiple sclerosis functional composite. Neurology. (2003) 61: 1367–73. https://doi.org/10.1212/01.wnl.0000094315.19931.90
35. Baier ML, Cutter GR, Rudick RA, Miller D, Cohen JA, Weinstock-Guttman B, et al. Low-contrast letter acuity testing captures visual dysfunction in patients with multiple sclerosis. Neurology. (2005) 64: 992–5. https://doi.org/10.1212/01.wnl.0000154521.40686.63
36. Bsteh G, Hegen H, Ladstatter F, Berek K, Amprosi M, Wurth S, et al. Change of olfactory function as a marker of inflammatory activity and disability progression in MS. Mult Scler. (2019) 25: 267–74. https://doi.org/10.1177/1352458517745724
37. Carotenuto A, Costabile T, Moccia M, Falco F, Scala MR, Russo CV, et al. Olfactory function and cognition in relapsing-remitting and secondary-progressive multiple sclerosis. Mult Scler Relat Disord. (2019) 27: 1–6. https://doi.org/10.1016/j.msard.2018.09.024
38. Bsteh G, Berek K, Hegen H, Teuchner B, Auer M, Wurth S, et al. Smelling multiple sclerosis: different qualities of olfactory function reflect either inflammatory activity or neurodegeneration. Mult Scler. (2020) 26: 57–68. DOI: 10.1177/1352458518814113.
39. Silva AM, Santos E, Moreira I, Bettencourt A, Coutinho E, Goncalves A, et al. Olfactory dysfunction in multiple sclerosis: Association with secondary progression. Mult Scler. (2012) 18: 616–21. https://doi.org/10.1177/1352458511427156
40. Rolet A, Magnin E, Millot JL, Berger E, Vidal C, Sileman G, et al. Olfactory dysfunction in multiple sclerosis: Evidence of a decrease in different aspects of olfactory function. Eur Neurol. (2013) 69: 166–70. https://doi.org/10.1159/000345482
41. Sastre-Garriga J, Pareto D, Rovira A. Brain atrophy in multiple sclerosis: clinical relevance and technical aspects. Neuroimaging Clin N Am. (2017) 27: 289–300. https://doi.org/10.1016/j.nic.2017.01.002
42. De Stefano N, Battaglini M, Smith SM. Measuring brain atrophy in multiple sclerosis. J Neuroimaging. (2007) 17 (Suppl. 1): 10S-5S. https://doi.org/10.1111/j.1552–6569.2007.00130
43. Amiri H, de Sitter A, Bendfeldt K, Battaglini M, Gandini Wheeler-Kingshott CAM, Calabrese M, et al. Urgent challenges in quantification and interpretation of brain grey matter atrophy in individual MS patients using MRI. Neuroimage Clin. (2018) 19: 466–75. https://doi.org/10.1016/j.nicl.2018.04.023
44. Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage. (2002) 17: 479–89. https://doi.org/10.1006/nimg.2002.1040
45. Smith SM, De Stefano N, Jenkinson M, Matthews PM. Normalized accurate measurement of longitudinal brain change. J Comput Assist Tomogr. (2001) 25: 466–75. https://doi.org/10.1097/00004728–200105000–00022
46. Smeets D, Ribbens A, Sima DM, Cambron M, Horakova D, Jain S, et al. Reliable measurements of brain atrophy in individual patients with multiple sclerosis. Brain Behav. (2016) 6: e00518. https://doi.org/10.1002/brb3.518
47. Durand-Dubief F, Belaroussi B, Armspach JP, Dufour M, Roggerone S, Vukusic S, et al. Reliability of longitudinal brain volume loss measurements between 2 sites in patients with multiple sclerosis: Comparison of 7 quantification techniques. AJNR Am J Neuroradiol. (2012) 33: 1918–24. https://doi.org/10.3174/ajnr.A3107
48. Eshaghi A, Prados F, Brownlee WJ, Altmann DR, Tur C, Cardoso MJ, et al. Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann Neurol. (2018) 83: 210–22. https://doi.org/10.1002/ana.25145
49. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. (2017) 16: 797–812. https://doi.org/10.1016/S1474–4422(17)30278–8
50. Chawla S, Kister I, Wuerfel J, Brisset JC, Liu S, Sinnecker T, et al. Iron and non-iron-related characteristics of multiple sclerosis and neuromyelitis optical lesions at 7T MRI. AJNR Am J Neuroradiol. (2016) 37: 1223–30. https://doi.org/10.3174/ajnr.a4729
51. Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: A comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol. (2000) 157: 267–76. https://doi.org/10.1016/s0002–9440(10)64537–3
52. Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. (2018) 14: 577–89. https://doi.org/10.1038/s41582–018–0058-z
53. Disanto G, Barro C, Benkert P, Naegelin Y, Schadelin S, Giardiello A, et al. Serum neurofilament light: A biomarker of neuronal damage in multiple sclerosis. Ann Neurol. (2017) 81: 857–70. https://doi.org/10.1002/ana.24954
54. Novakova L, Zetterberg H, Sundstrom P, Axelsson M, Khademi M, Gunnarsson M, et al. Monitoring disease activity in multiple sclerosis using serum neurofilament light protein. Neurology. (2017) 89: 2230–7. https://doi.org/10.1212/wnl.0000000000004683
55. Bhan A, Jacobsen C, Myhr KM, Dalen I, Lode K, Farbu E. Neurofilaments and 10-year follow-up in multiple sclerosis. Mult Scler. (2018) 24: 1301–7. https://doi.org/10.1177/1352458518782005
56. Ferrazzano G, Crisafulli SG, Baione V, Tartaglia M, Cortese A, Frontoni M, et al. Early diagnosis of secondary progressive multiple sclerosis: Focus on fluid and neurophysiological biomarkers. J Neurol. (2020). https://doi.org/10.1007/s00415–020–09964–4
57. Kuhle J, Kropshofer H, Haering DA, Kundu U, Meinert R, Barro C, et al. Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. Neurology. (2019) 92: e1007–15. https://doi.org/10.1212/wnl.0000000000007032
58. Barro C, Benkert P, Disanto G, Tsagkas C, Amann M, Naegelin Y, et al. Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain. (2018) 141: 2382–91. https://doi.org/10.1093/brain/awy154
59. Sellebjerg F, Royen L, Soelberg Sorensen P, Oturai AB, Jensen PEH. Prognostic value of cerebrospinal fluid neurofilament light chain and chitinase-3-like-1 in newly diagnosed patients with multiple sclerosis. Mult Scler. (2019) 25: 1444–51. https://doi.org/10.1177/1352458518794308
60. Ferraro D, Guicciardi C, De Biasi S, Pinti M, Bedin R, Camera V, et al. Plasma neurofilaments correlate with disability in progressive multiple sclerosis patients. Acta Neurol Scand. (2020) 141: 16–21. https://doi.org/10.1111/ane.13152
61. Kalatha T, Hatzifilippou E, Arnaoutoglou M, Balogiannis S, Koutsouraki E. Glial and neuroaxonal biomarkers in a multiple sclerosis (MS) cohort. Hell J Nucl Med. (2019) 22 (Suppl. 2): 113–21.
62. Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. (2015) 38: 364–74. https://doi.org/10.1016/j.tins.2015.04.003
63. Williams A, Piaton G, Lubetzki C. Astrocytes – friends or foes in multiple sclerosis? Glia. (2007) 55: 1300–12. https://doi.org/10.1002/glia.20546
64. Correale J, Farez MF. The role of astrocytes in multiple sclerosis progression. Front Neurol. (2015) 6: 180. https://doi.org/10.3389/fneur.2015.00180
65. Sofroniew MV, Vinters HV. Astrocytes: Biology and pathology. Acta Neuropathol. (2010) 119: 7–35. https://doi.org/10.1007/s00401–009–0619–8
66. Novakova L, Axelsson M, Malmestrom C, Imberg H, Elias O, Zetterberg H, et al. Searching for neurodegeneration in multiple sclerosis at clinical onset: diagnostic value of biomarkers. PLoS ONE. (2018) 13: e0194828. https://doi.org/10.1371/journal.pone.0194828
67. Axelsson M, Malmestrom C, Nilsson S, Haghighi S, Rosengren L, Lycke J. Glial fibrillary acidic protein: A potential biomarker for progression in multiple sclerosis. J Neurol. (2011) 258: 882–8. https://doi.org/10.1007/s00415–010–5863–2
68. Hogel H, Rissanen E, Barro C, Matilainen M, Nylund M, Kuhle J, et al. Serum glial fibrillary acidic protein correlates with multiple sclerosis disease severity. Mult Scler. (2020) 26: 210–9. https://doi.org/10.1177/1352458518819380
69. Абрамова А. А., Закройщикова И. В., Кротенкова И. А., Кочергин И. А., Захарова М. Н. Эктопические лимфоидные В-клеточные фолликулы при рассеянном склерозе: роль в патогенезе заболевания и прогностическая значимость. Журнал неврологии и психиатрии им. С. С. Корсакова. 2019; 119 (10, вып. 2): 21–27. https://doi.org/10.17116/jnevro201911910221
Рецензия
Для цитирования:
Урбан М.А., Комиссарова Н.В., Хазиева И.И., Шамсутдинова И.И. Предикторы перехода ремиттирующего рассеянного склероза во вторично-прогрессирующий. Медицинский алфавит. 2023;(14):40-44. https://doi.org/10.33667/2078-5631-2023-14-40-44
For citation:
Urban M.A., Komissarova N.V., Khazieva I.I., Shamsutdinova I.I. Predictors of transition from relapsing‑remitting multiple sclerosis to secondary progressive. Medical alphabet. 2023;(14):40-44. (In Russ.) https://doi.org/10.33667/2078-5631-2023-14-40-44