Preview

Медицинский алфавит

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Искусственный интеллект в диагностике хронического гастрита, инфекции Helicobacter pylori и функциональной диспепсии

https://doi.org/10.33667/2078-5631-2022-12-27-33

Полный текст:

Аннотация

Заболевания верхних отделов пищеварительного тракта являются чрезвычайно распространенной патологией и имеют не только медицинское, но и социальное значение, так как часто возникают у молодых людей трудоспособного возраста. В статье представлен обзор современных данных литературы о возможностях искусственного интеллекта в диагностике и лечении хронического гастрита, в том числе с признаками атрофии, инфекции Helicobacter pylori и функциональной диспепсии. Собраны данные различных исследований, демонстрирующие эффективность работы различных нейронных сетей в диагностике этих заболеваний.

Об авторах

Ю. П. Успенский
ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России; ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет имени академика И. П. Павлова» Минздрава России
Россия

Успенский Юрий Павлович, д.м.н., проф., зав. кафедрой факультетской терапии имени В. А. Вальдмана; проф. кафедры внутренних болезней стоматологического факультета

Санкт-Петербург



Н. В. Барышникова
ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России; ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет имени академика И. П. Павлова» Минздрава России; ФГБНУ «Институт экспериментальной медицины»
Россия

Барышникова Наталья Владимировна, к.м.н., доцент, м.н.с. лаборатории медико-социальных проблем педиатрии;, доцент кафедры внутренних болезней стоматологического факультета; н.с. лаборатории молекулярной микробиологии

Санкт-Петербург



А. А. Ершова
ФГБОУ ВО «Уральский государственный медицинский университет» Минздрава России
Россия

Ершова Анастасия Андреевна, студентка VI курса

Екатеринбург



Список литературы

1. Sugano K., Tack J., Kuipers E. J., Graham D. Y., El-Omar E.M., Miura S., Haruma K., Asaka M., Uemura N., Malfertheiner P.; faculty members of Kyoto Global Consensus Conference. Kyoto global consensus report on Helicobacter pylori gastritis. Gut. 2015 Sep; 64 (9): 1353–67. DOI: 10.1136/gutjnl-2015–309252. Epub 2015 Jul 17. PMID: 26187502; PMCID: PMC 4552923.

2. Malfertheiner P., Megraud F., O'Morain C.A., Gisbert J. P., Kuipers E. J., Axon A. T., Bazzoli F., Gasbarrini A., Atherton J., Graham D. Y., Hunt R., Moayyedi P., Rokkas T., Rugge M., Selgrad M., Suerbaum S., Sugano K.., El-Omar EM.; European Helicobacter and Microbiota Study Group and Consensus panel. Management of Helicobacter pylori infection-the Maastricht V/ Florence Consensus Report. Gut. 2017 Jan; 66 (1): 6–30. DOI: 10.1136/gutjnl-2016–312288. Epub 2016 Oct 5. PMID: 27707777.

3. Yang Y.J., Bang C. S. Application of artificial intelligence in gastroenterology. World J Gastroenterol. 2019 Apr 14; 25 (14): 1666–1683. DOI: 10.3748/wjg.v25.i14.1666. PMID: 31011253; PMCID: PMC 6465941.

4. Wu L., Zhang J., Zhou W., An P.., Shen L, Liu J., Jiang X., Huang X., Mu G., Wan X., Lv X., Gao J., Cui N., Hu S., Chen Y., Hu X., Li J., Chen D., Gong D., He X., Ding Q., Zhu X., Li S., Wei X., Li X., Wang X., Zhou J., Zhang M., Yu H. G. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy. Gut. 2019 Dec; 68 (12): 2161–2169. DOI: 10.1136/gutjnl-2018–317366. PMID: 30858305.

5. Takiyama H., Ozawa T., Ishihara S., Fujishiro M., Shichijo S., Nomura S., Miura M., Tada T. Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks. Sci Rep. 2018 May 14; 8 (1): 7497. DOI: 10.1038/s41598–018–25842–6. PMID: 29760397; PMCID: PMC 5951793.

6. Huang C.R., Sheu B. S., Chung P. C., Yang H. B. Computerized diagnosis of Helicobacter pylori infection and associated gastric inflammation from endoscopic images by refined feature selection using a neural network. Endoscopy. 2004 Jul; 36 (7): 601–8. DOI: 10.1055/s-2004–814519. PMID: 15243882.

7. Shichijo S., Nomura S., Aoyama K., Nishikawa Y., Miura M., Shinagawa T., Takiyama H., Tanimoto T., Ishihara S., Matsuo K., Tada T. Application of Convolutional Neural Networks in the Diagnosis of Helicobacter pylori Infection Based on Endoscopic Images. EBioMedicine. 2017 Nov; 25:106–111. DOI: 10.1016/j.ebiom.2017.10.014. Epub 2017 Oct 16. PMID: 29056541; PMCID: PMC 5704071.

8. Itoh T., Kawahira H., Nakashima H., Yata N. Deep learning analyzes Helicobacter pylori infection by upper gastrointestinal endoscopy images. Endosc Int Open. 2018 Feb; 6 (2): E 139–E 144. DOI: 10.1055/s-0043–120830. Epub 2018 Feb 1. PMID: 29399610; PMCID: PMC 5794437.

9. Nakashima H., Kawahira H., Kawachi H., Sakaki N. Artificial intelligence diagnosis of Helicobacter pylori infection using blue laser imaging-bright and linked color imaging: a single-center prospective study. Ann Gastroenterol. 2018 Jul-Aug; 31 (4): 462–468. DOI: 10.20524/ aog.2018.0269. Epub 2018 May 3. PMID: 29991891; PMCID: PMC 6033753.

10. Zheng W., Zhang X., Kim J. J., Zhu X., Ye G., Ye B., Wang J., Luo S., Li J., Yu T., Liu J., Hu W., Si J. High Accuracy of Convolutional Neural Network for Evaluation of Helicobacter pylori Infection Based on Endoscopic Images: Preliminary Experience. Clin Transl Gastroenterol. 2019 Dec; 10 (12): e00109. DOI: 10.14309/ctg.0000000000000109. PMID: 31833862; PMCID: PMC 6970551.

11. Zhang Y., Li F., Yuan F., Zhang K.., Huo L, Dong Z., Lang Y., Zhang Y., Wang M., Gao Z., Qin Z., Shen L. Diagnosing chronic atrophic gastritis by gastroscopy using artificial intelligence. Dig Liver Dis. 2020 May; 52 (5): 566–572. DOI: 10.1016/j.dld.2019.12.146. PMID: 32061504.

12. Kanai M., Togo R., Ogawa T., Haseyama M. Chronic atrophic gastritis detection with a convolutional neural network considering stomach regions. World J Gastroenterol. 2020 Jul 7; 26 (25): 3650–3659. DOI: 10.3748/wjg.v26.i25.3650. PMID: 32742133; PMCID: PMC 7366055.

13. Luo H., Xu G., Li C., He L., Luo L., Wang Z., Jing B., Deng Y., Jin Y., Li Y., Li B., Tan W., He C., Seeruttun S. R., Wu Q., Huang J., Huang D. W., Chen B., Lin S. B., Chen Q. M., Yuan C. M., Chen H. X., Pu H. Y., Zhou F., He Y., Xu R. H. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. Lancet Oncol. 2019 Dec; 20 (12): 1645–1654. DOI: 10.1016/S 1470–2045(19)30637–0. Epub 2019 Oct 4. PMID: 31591062.

14. Guimarães P., Keller A., Fehlmann T., Lammert F., Casper M. Deep-learning based detection of gastric precancerous conditions. Gut. 2020 Jan; 69 (1): 4–6. DOI: 10.1136/gutjnl-2019–319347. Epub 2019 Aug 2. PMID: 31375599.

15. Lahner E., Grossi E., Intraligi M., Buscema M., Corleto V. D., Delle Fave G., Annibale B. Possible contribution of artificial neural networks and linear discriminant analysis in recognition of patients with suspected atrophic body gastritis. World J Gastroenterol. 2005 Oct 7; 11 (37): 5867–73. DOI: 10.3748/wjg.v11.i37.5867. PMID: 16270400; PMCID: PMC 4479691.

16. Horiuchi Y., Aoyama K., Tokai Y., Hirasawa T., Yoshimizu S., Ishiyama A., Yoshio T., Tsuchida T., Fujisaki J., Tada T. Convolutional Neural Network for Differentiating Gastric Cancer from Gastritis Using Magnified Endoscopy with Narrow Band Imaging. Dig Dis Sci. 2020 May; 65 (5): 1355–1363. DOI: 10.1007/s10620–019–05862–6. Epub 2019 Oct 4. PMID: 31584138.

17. Ma B., Guo Y., Hu W., Yuan F., Zhu Z., Yu Y., Zou H. Artificial Intelligence-Based Multiclass Classification of Benign or Malignant Mucosal Lesions of the Stomach. Front Pharmacol. 2020 Oct 2; 11: 572372. DOI: 10.3389/fphar.2020.572372. PMID: 33132910; PMCID: PMC 7562716.

18. Goodfellow I., Bengio Y., Courville A. MIT Press; Cambridge, MA: 2016. Deep learning. ISBN: 978–0262035613.

19. Pannala R., Krishnan K., Melson J., Parsi M. A., Schulman A. R., Sullivan S., Trikudanathan G., Trindade A. J., Watson R. R., Maple J. T., Lichtenstein D. R. Artificial intelligence in gastrointestinal endoscopy. Video GIE. 2020 Nov 9; 5 (12): 598–613. DOI: 10.1016/j.vgie.2020.08.013. PMID: 33319126; PMCID: PMC 7732722.

20. Hirasawa T., Aoyama K., Tanimoto T., Ishihara S., Shichijo S., Ozawa T., Ohnishi T., Fujishiro M., Matsuo K., Fujisaki J., Tada T. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer. 2018 Jul; 21 (4): 653–660. DOI: 10.1007/s10120–018–0793–2. Epub 2018 Jan 15. PMID: 29335825.

21. Zhu Y., Wang Q. C., Xu M.D, Zhang Z., Cheng J., Zhong Y. S., Zhang Y. Q., Chen W. F., Yao L. Q., Zhou P. H., Li Q. L. Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy. Gastrointest Endosc. 2019 Apr; 89 (4): 806–815.e1. DOI: 10.1016/j.gie.2018.11.011. Epub 2018 Nov 16. PMID: 30452913.

22. Makristathis A.., Hirschl AM.., Mégraud F, Bessède E. Review: Diagnosis of Helicobacter pylori infection. Helicobacter. 2019 Sep; 24 Suppl 1: e12641. DOI: 10.1111/hel.12641. PMID: 31486244.

23. Shichijo S., Endo Y., Aoyama K., Takeuchi Y., Ozawa T., Takiyama H., Matsuo K., Fujishiro M., Ishihara S., Ishihara R., Tada T. Application of convolutional neural networks for evaluating Helicobacter pylori infection status on the basis of endoscopic images. Scand J Gastroenterol. 2019 Feb; 54 (2): 158–163. DOI: 10.1080/00365521.2019.1577486. Epub 2019 Mar 17. PMID: 30879352.

24. Stanghellini V., Chan F. K., Hasler W. L., Malagelada J. R., Suzuki H., Tack J., Talley N. J. Gastroduodenal Disorders. Gastroenterology. 2016 May; 150 (6): 1380–92. DOI: 10.1053/j.gastro.2016.02.011. PMID: 27147122.

25. Andriulli A., Grossi E., Buscema M., Pilotto A., Festa V., Perri F. Artificial neural networks can classify uninvestigated patients with dyspepsia. Eur J Gastroenterol Hepatol. 2007 Dec; 19 (12): 1055–8. DOI: 10.1097/MEG.0b013e3282f198b2. PMID: 17998828.

26. Andriulli A., Grossi E., Buscema M., Festa V., Intraligi N. M., Dominici P., Cerutti R., Perri F.; NUD LOOK Study Group. Contribution of artificial neural networks to the classification and treatment of patients with uninvestigated dyspepsia. Dig Liver Dis. 2003 Apr; 35 (4): 222–31. DOI: 10.1016/ s1590–8658(03)00057–4. PMID: 12801032.

27. Sáenz Bajo N., Barrios Rueda E., Conde Gómez M., Domínguez Macías I., López Carabaño A., Méndez Díez C. Uso de redes neuronales en medicina: a propósito de la patología dispéptica [Use of neural networks in medicine: concerning dyspeptic pathology]. Aten Primaria. 2002 Jun 30; 30 (2): 99–102. Spanish. DOI: 10.1016/S 0212–6567(02)78978–6. PMID: 12106560; PMCID: PMC 7679651.

28. Buscema M., Grossi E., Intraligi M., Garbagna N., Andriulli A., Breda M. An optimized experimental protocol based on neuro-evolutionary algorithms application to the classification of dyspeptic patients and to the prediction of the effectiveness of their treatment. Artif Intell Med. 2005 Jul; 34 (3): 279–305. DOI: 10.1016/j.artmed.2004.12.001. PMID: 16023564.


Рецензия

Для цитирования:


Успенский Ю.П., Барышникова Н.В., Ершова А.А. Искусственный интеллект в диагностике хронического гастрита, инфекции Helicobacter pylori и функциональной диспепсии. Медицинский алфавит. 2022;(12):27-33. https://doi.org/10.33667/2078-5631-2022-12-27-33

For citation:


Uspenskiy Yu.P., Baryshnikova N.V., Ershova A.A. Artificial intelligence in diagnostic of chronic gastritis, Helicobacter pylori infection and functional dyspepsia. Medical alphabet. 2022;(12):27-33. (In Russ.) https://doi.org/10.33667/2078-5631-2022-12-27-33

Просмотров: 49


ISSN 2078-5631 (Print)