Preview

Medical alphabet

Advanced search

EEG-correlates of work efficiency level among young persons with stress-induced bruxism

https://doi.org/10.33667/2078-5631-2021-36-25-29

Abstract

Purpose of the study. To establish the relationship between neurophysiological status and the level of efficiency in young people with bruxism.

Materials and methods. Two groups of 64 and 53 subjects (males and females) aged 20–35 years old with bruxism and non-bruxers were formed according to questionnaire results and physical examination. The level of efficiency was assessed by the results of sensorimotor tracking of a moving object (the ‘Smile’ model). Spectral analysis was performed for evaluation of the baseline electroencephalograms. Microsoft Excel and Statistica 10.0 programs were used for statistical data processing.

Results. The level of efficiency was statistically significantly lower in the hardest test of Smile model among the individuals with bruxism (p < 0.05). The bruxers also demonstrated a significantly lower dominant frequency and maximum amplitude of alpha-rhythm (p < 0.05), and significantly higher dominant frequency of beta2 rhythm (p < 0.05). The dominant frequency and the maximum amplitude of the alpha-rhythm are parameters corresponding to significant coefficients of the regression analysis. A negative relationship was found between the degree of error during sensorimotor tracking and the frequency and amplitude of alpha-rhythm.

Conclusion. Regression models present the relationship between the level of efficiency and the alpha-rhythm severity. The regression equations make it possible to determine the functional state of the subject using an electroencephalogram.

About the Authors

A. E. Barulin
Volgograd State Medical University
Russian Federation

Barulin Alexander E., DM Sci (habil.), associate professor, head of Dept of Neurology, Psychiatry, Manual Medicine and Medical Rehabilitation

Volgograd



S. V. Klauchek
Volgograd State Medical University
Russian Federation

Klauchek Anzhelika E., PhD Med, associate professor at Dept of Neurology, Psychiatry, Manual Medicine and Medical Rehabilitation

Volgograd



A. E. Klauchek
Volgograd State Medical University
Russian Federation

Klauchek Sergey V., DM Sci (habil.), professor, head of Dept of Normal Physiology

Volgograd



References

1. Wieckiewicz M., Paradowska-Stolarz A., Wieckiewicz W. Psychosocial aspects of bruxism: the most paramount factor influencing teeth grinding. Biomed Res Int. 2014; 2014: 469187. DOI: 10.1155/2014/469187.

2. Orlova O. R., Alekseeva A. Yu., Mingazova L. R., Konovalova Z. N. Bruxism as a Neurological Problem (Literature Review). Neuromuscular diseases 2018; 8 (1): 20–7.

3. Lobbezoo F. Bruxism: definition, diagnosis, epidemiology, and etiology. In: Proceedings of the II Congresso Nazionale GSID (Gruppo di Studio Italiano Disordini Craniomandibolari); 2016 July 3–4; Marina di Carrara, Italy. Italy: GSID; 2016. p. 1–5.

4. Abekura H., Tsuboi M., Okura T., Kagawa K., Sadamori S., Akagawa Y. Association between sleep bruxism and stress sensitivity in an experimental psychological stress task. Biomed. Res. 2011; 32: 395–399. DOI: 10.2220/biomedres.32.395.

5. Smardz J., Martynowicz H., Wojakowska A., Michalek-Zrabkowska M., Mazur G., Wieckiewicz M. Correlation between Sleep Bruxism, Stress, and Depression-A Polysomnographic Study. J Clin Med. 2019 Aug 29; 8 (9): 1344. DOI: 10.3390/jcm8091344. PMID: 31470624; PMCID: PMC 6781101.

6. Köhler A. A., Hugoson A., Magnusson T. Clinical signs indicative of temporomandibular disorders in adults: time trends and associated factors. Swedish Dental Journal. 2013; 37 (1): 1–11.

7. Lobbezoo F., Ahlberg J., Raphael K. G., Wetselaar P., Glaros A. G., Kato T., Santiago V., Winocur E., De Laat A., De Leeuw R., et al. International consensus on the assessment of bruxism: Report of a work in progress. J. Oral Rehabil. 2018; 45: 837–844. DOI: 10.1111/joor.12663.

8. Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications. Chest. 2014; 146 (5): 1387–1394. DOI: 10.1378/chest.14–0970.

9. Golubev V. L. Focal and segmental forms of dystonia. Extrapyramidal Disorders: A Guide to Diagnosis and Treatment. Ed. V. N. Shtok and others. M .: MEDpress-inform. 2002.S. 291–301.

10. Antoun Reyad A., Girgis E., Ayoub A. and Mishriky R. (2020) Bruxism and psychotropic medications, Progress in Neurology and Psychiatry, 24 (1), pp. 31–35.

11. Mayboroda Yu.N., Khorev O. Yu. Neuromuscular and articular dysfunction of the temporomandibular joint. Kuban Scientific Medical Bulletin. 2017; 24 (3): 142–148. DOI: 10.25207/1608–6228–2017–24–3–142–148.

12. Yap A. U., Chua A. P. Sleep bruxism: Current knowledge and contemporary management. J Conserv Dent. 2016; 19 (5): 383–389. DOI: 10.4103/0972–0707.190007.

13. Klauchek S. V., Kudrin R. A., Kochegura T. N., Schmidt S. A., Akhundova R. E., Fokina A. S. Physiological foundations of the effectiveness of operator activity and its bioresonance correction. Volgograd: Volgograd Publishing House, 2009. 218 p.

14. Bubnova A. E., Naumenko A. E., Klauchek S. V. Physiological features of autonomic reactivity as a prognostic criterion for the critical level of fatigue in operators. Bulletin of VolgSMU. 2019.4 (72). P. 60–64. DOI: 10.19163/1994–9480–2019–4(72)-60–64.

15. Fares Al-Shargie, Masashi Kiguchi, Nasreen Badruddin, Sarat C. Dass, Ahmad Fadzil Mohammad Hani, and Tong Boon Tang (2016). Mental stress assessment using simultaneous measurement of EEG and fNIRS. Biomedical Optics Express. 2016 Oct 1; 7(10): 3882–3898. Published online 2016 Sep 6. DOI: 10.1364/BOE.7.003882.

16. Pavlenko V. B., Cherny S. V., Gubkina D. G. EEG correlates of anxiety, anxiety and emotional stability in healthy adults. Neurophysiology. 2009. T. 41, No. 5. P. 400–408.

17. Zoefel B., Huster R. J., and Herrmann C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage 54, 1427–1431. DOI: 10.1016/j.neuroimage.2010.08.078.

18. Sigala R., Haufe S., Roy D., Dinse H. R. and Ritter P. (2014) The role of alpha-rhythm states in perceptual learning: insights from experiments and computational models. Front. Comput. Neurosci. 8: 36. DOI: 10.3389/fncom.2014.00036.

19. Ros T., Munneke M. A., Ruge D., Gruzelier J. H., and Rothwell J. C. (2010). Endogenous control of waking brain rhythms induces neuroplasticity in humans. Eur. J. Neurosci. 31, 770–778. DOI: 10.1111/j.1460–9568.2010.07100.x.

20. Klimesch W. (1997) EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 26, 319–340.

21. Zou Q., Ross T. J., Gu H., Geng X., Zuo X. N., Hong L. E., et al. (2013). Intrinsic resting-state activity predicts working memory brain activation and behavioral performance. Hum. Brain Mapp. 34, 3204–3215. DOI: 10.1002/hbm.22136.


Review

For citations:


Barulin A.E., Klauchek S.V., Klauchek A.E. EEG-correlates of work efficiency level among young persons with stress-induced bruxism. Medical alphabet. 2021;(36):25-29. (In Russ.) https://doi.org/10.33667/2078-5631-2021-36-25-29

Views: 416


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)