Preview

Medical alphabet

Advanced search

Post-infectious irritable bowel syndrome: renaissance time?

https://doi.org/10.33667/2078-5631-2021-35-23-28

Abstract

Postinfectious irritable bowel syndrome (PI–IBS) is a distinct phenotype of the disease. The occurrence of gastrointestinal symptoms in PI–IBS is in direct chronological connection with an episode of acute intestinal infection. Previously the problem was considered as the outcome of parasitic, protozoal or bacterial infection. The global spread of a novel coronavirus infection (COVID-19) and increase in the number of new cases of IBS in the population suggests a renaissance of PI–IBS and makes us look at this problem again. This article summarizes and presents modern information on the possible mechanisms of development of PI–IBS, including in persons who have undergone COVID-19.

About the Authors

O. V. Gaus
Omsk State Medical University
Russian Federation

Gaus Olga V. - PhD Med, associate professor at Dept of Faculty Therapy and Gastroenterology. Scopus ID: 56598554900.

Omsk



M. A. Livzan
Omsk State Medical University
Russian Federation

Livzan Maria A. - DM Sci (habil.), professor, rector, head of Dept of Faculty Therapy and Gastroenterology. Scopus ID: 24341682600.

Omsk



D. A. Gavrilenko
Omsk State Medical University
Russian Federation

Gavrilenko Darya A. - 5th year student of the Faculty of Medicine.

Omsk



References

1. Ivashkin V. T., Shelygin Yu.A., Baranskaya Yu.K., Belousova E. A., Beniashvili A. G., Vasilyev S. V. et al. Diagnosis and treatment of the irritable bowel syndrome: clinical guidelines of the Russian gastroenterological association and Russian association of coloproctology. Ross z gastroenterol. Gepatol, koloproktol. 2017; 27 (5): 76–93. https://doi.org/10.22416/1382–4376–2017–27–5–76–93 2.

2. Flacco M. E., Manzoli L., De Giorgio R., Gasbarrini A., Cicchetti A., Bravi F. et al. Costs of irritable bowel syndrome in European countries with universal healthcare cover-age: a meta-analysis. Eur. Rev. Med. Pharmacol. 2019; 23 (7): 2986–3000. https://doi.org/10.26355/eurrev_201904_17580

3. Peery A. F., Crockett S. D., Murphy C. C., Lund J. L., Dellon E. S., Williams J. L., et al. Bur-den and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. Gastroenterology. 2019; 156 (1): 254–272.e11. https://doi.org/10.1053/j.gastro.2018.08.063

4. Barbara G., Grover M., Bercik P., Corsetti M., Ghoshal U. C., Ohman L., Rajilić-Stojanović M. Rome Foundation Working Team Report on Post-Infection Irritable Bowel Syndrome. Gastroenterology. 2019; 156 (1): 46–58.e7. https://doi.org/10.1053/j.gastro.2018.07.011

5. Chaudhary N. A., Truelove S. C. The irritable colon syndrome. A study of the clinical fea-tures, predisposing causes, and prognosis in 130 cases. Q. J. Med. 1962; (31): 307–322.

6. Thabane M., Marshall J. K. Post-infectious irritable bowel syndrome. World. J. Gastro-enterol. 2009; 15 (29): 3591–6. https://doi.org/10.3748/wjg.15.3591

7. Klem F., Wadhwa A., Prokop L. J., Sundt W. J., Farrugia G., Camilleri M. et al. Prevalence, Risk Factors, and Outcomes of Irritable Bowel Syndrome After Infectious Enteritis: A Systematic Review and Meta-analysis. Gastroenterology. 2017; 152 (5): 1042–1054.e1. https://doi.org/10.1053/j.gastro.2016.12.039

8. Marshall J. K., Thabane M., Garg A. X., Clark W. F., Salvadori M., Collins S. M. Walkerton Health Study Investigators. Incidence and epidemiology of irritable bowel syndrome after a large waterborne outbreak of bacterial dysentery. Gastroenterology. 2006; 131 (2): 445–50; quiz 660. https://doi.org/10.1053/j.gastro.2006.05.053

9. Neal K. R., Hebden J., Spiller R. Prevalence of gastrointestinal symptoms six months after bacterial gastroenteritis and risk factors for development of the irritable bowel syndrome: postal survey of patients. BMJ. 1997; 314 (7083): 779–82. https://doi.org/10.1136/bmj.314.7083.779

10. Cremon C., Stanghellini V., Pallotti F., Fogacci E., Bellacosa L., Morselli-Labate A.M. et al. Salmonella gastroenteritis during childhood is a risk factor for irritable bowel syndrome in adulthood. Gastroenterology. 2014; 147 (1): 69–77. https://doi.org/10.1053/j.gastro.2014.03.013

11. Nielsen H. L., Engberg J., Ejlertsen T., Nielsen H. Psychometric scores and persistence of irritable bowel after Campylobacter concisus infection. Scand J Gastroenterol. 2014; 49 (5): 545–51. https://doi.org/10.3109/00365521.2014.886718

12. Ruigomez A., García Rodriguez L. A., Panes J. Risk of irritable bowel syndrome after an episode of bacterial gastroenteritis in general practice: influence of comorbidities. Clin Gastroenterol Hepatol. 2007; 5 (4): 465–9. https://doi.org/10.1016/j.cgh.2007.02.008

13. Thabane M., Simunovic M., Akhtar-Danesh N., Garg A. X., Clark W. F., Collins S. M. et al. An outbreak of acute bacterial gastroenteritis is associated with an increased incidence of irritable bowel syndrome in children. Am J Gastroenterol. 2010; 105 (4): 933–9. https://doi.org/10.1038/ajg.2010.74

14. Koh S. J., Lee D. H., Lee S. H., Park Y. S., Hwang J. H., Kim J. W. et al. Incidence and risk factors of irritable bowel syndrome in community subjects with cultureproven bacterial gastroenteritis. Korean J. Gastroenterol. 2012; 60 (1): 13–8. https://doi.org/10.4166/kjg.2012.60.1.13

15. Törnblom H., Holmvall P., Svenungsson B., Lindberg G. Gastrointestinal symptoms after infectious diarrhea: a five-year follow-up in a Swedish cohort of adults. Clin. Gastroenterol. Hepatol. 2007 Apr; 5 (4): 461–4. https://doi.org/10.1016/j.cgh.2007.01.007

16. Ruigomez A., Garcia Rodriguez L. A., Panes J. Risk of irritable bowel syndrome after an episode of bacterial gastroenteritis in general practice: influence of comorbidities. Clin Gastroenterol Hepatol. 2007; 5 (4): 465–469. https://doi.org/10.1016/j.cgh.2007.02.008

17. Pitzurra R. Fried M., Rogler G., Rammert C., Tschopp A., Hatz C. et al. irritable bowel syndrome among a cohort of European travelers to resource-limited destinations. J. Travel. Med. 2011; 18 (4): 250–6. https://doi.org/10.1111/j.1708–8305.2011.00529.x

18. Thabane M., Simunovic M., Akhtar-Danesh N., Garg A. X., Clark W. F., Collins S. M. et al. An outbreak of acute bacterial gastroenteritis is associated with an increased incidence of irritable bowel syndrome in children. Am J Gastroenterol. 2010 Apr; 105 (4): 933–9. https://doi.org/10.1038/ajg.2010.74

19. Nielsen H. L., Engberg J., Ejlertsen T., Nielsen H. Psychometric scores and persistence of irritable bowel after Campylobacter concisus infection. Scand J Gastroenterol. 2014; 49 (5): 545–51. https://doi.org/10.3109/00365521.2014.886718

20. Zhang Y., Li L., Guo C., Mu D., Feng B., Zuo X., et al. Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: A meta-analysis. BMC Gastroenterol. 2016; 16: 62.

21. Pinto-Sanchez M.I., Smecuol E. C., Temprano M. P., Sugai E., Gonzalez A., Moreno M. L. et al. Bifidobacterium infantis NLS super strain reduces the expression of alpha-Defensin-5, a marker of innate immunity, in the mucosa of active celiac disease patients. J. Clin. Gastroenterol. 2017; 51: 814–817. https://doi.org/10.1097/MCG.0000000000000687

22. Quek S. X.Z., Loo E. X.L., Demutska A., Chua C. E., Kew G. S., Wong S. et al. Impact of the coronavirus disease 2019 pandemic on irritable bowel syndrome. J Gastroenterol Hepatol. 2021; 36 (8): 2187–2197. https://doi.org/10.1111/jgh.15466

23. Effenberger M., Grabherr F. Mayr L., Schwaerzler J., Nairz M., Seifert M. et al. Faecal calprotectin indicates intestinal inflammation in COVID-19. Gut. 2020; 69 (8): 1543–1544. https://doi.org/10.1136/gutjnl-2020–321388

24. Han C., Duan C., Zhang S., Spiegel B., Shi H., Wang W. et al. Digestive Symptoms in COVID-19 Patients with Mild Disease Severity: Clinical Presentation, Stool Viral RNA Testing, and Outcomes. Am J Gastroenterol. 2020; 115 (6): 916–923. https://doi.org/10.14309/ajg.0000000000000664

25. Spiller R. Significance of Postinfectious Irritable Bowel Syndrome? Gastroenterology. 2018: S 0016–5085 (18) 35282-X. https://doi.org/10.1053/j.gastro.2018.11.034

26. Yang W., Cong Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell. Mol. Immunol. 2021; 18 (4): 866–877. https://doi.org/10.1038/s41423–021–00661–428 Медицинский алфавит № 35 / 2021. Практическая гастроэнтерология (3)

27. Azad M. A.K., Sarker M., Wan D. Immunomodulatory Effects of Probiotics on Cytokine Profiles. Biomed. Res. Int. 2018; 2018: 8063647. https://doi.org/10.1155/2018/8063647

28. Faith J. J., Guruge J. L., Charbonneau M., Subramanian S., Seedorf H., Goodman A. L. et al. The long-term stability of the human gut microbiota. Science. 2013; 341 (6141): 1237439. https://doi.org/10.1126/science.1237439

29. Dicksved J., Ellström P., Engstrand L., Rautelin H. Susceptibility to Campylobacter infection is associated with the species composition of the human fecal microbiota. mBio. 2014; 5 (5): e01212–14. https://doi.org/10.1128/mBio.01212–14

30. Chong P. P., Chin V. K., Looi C. Y., Wong W. F., Madhavan P., Yong V. C. The Microbiome and Irritable Bowel Syndrome – A Review on the Pathophysiology, Current Research and Future Therapy. Front. Microbiol. 2019; 10: 1136. https://doi.org/10.3389/fmicb.2019.01136

31. Carroll I. M., Ringel-Kulka T., Siddle J. P., Ringel Y. Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil. 2012; 24 (6): 521–30, e248. https://doi.org/10.1111/j.1365–2982.2012.01891.x

32. Zuo T. Zhang F., Lui G. C.Y., Yeoh Y. K., Li A. Y.L., Zhan H. et al. Alterations in Gut Microbi-ota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020; 159 (3): 944–955.e8. https://doi.org/10.1053/j.gastro.2020.05.048

33. Schmulson M., Davalos M. F., Berumen J. Beware: Gastrointestinal symptoms can be a manifestation of COVID-19. Rev. Gastroenterol. Mex. (Engl Ed). 2020; 85 (3): 282–287. https://doi.org/10.1016/j.rgmx.2020.04.001

34. Marshall J. K., Thabane M., Garg A. X., Clark W., Meddings J., Collins S. M.; WEL Investigators. Intestinal permeability in patients with irritable bowel syndrome after a waterborne outbreak of acute gastroenteritis in Walkerton, Ontario. Aliment. Pharmacol. Ther. 2004; 20 (11–12): 1317–22. https://doi.org/10.1111/j.1365–2036.2004.02284.x

35. Long Y., Du L., Kim J. J., Chen B., Zhu Y., Zhang Y. et al. MLCK-mediated intestinal permeability promotes immune activation and visceral hypersensitivity in PI–IBS mice. Neurogastroenterol. Motil. 2018; 30 (9): e13348. https://doi.org/doi:10.1111/nmo.13348

36. Du L., Long Y, Kim JJ, Chen B, Zhu Y, Dai N. Protease Activated Receptor-2 Induces Immune Activation and Visceral Hypersensitivity in Post-infectious Irritable Bowel Syndrome Mice. Dig Dis Sci. 2019; 64 (3): 729–739. https://doi.org/10.1007/s10620–018–5367-y

37. Wang L. H., Fang X. C., Pan G. Z. Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis. Gut. 2004; 53 (8): 1096–101. https://doi.org/10.1136/gut.2003.021154

38. Cremon C., Gargano L., Morselli-Labate A.M., Santini D., Cogliandro R. F., De Giorgio R. et al. Mucosal immune activation in irritable bowel syndrome: gender-dependence and association with digestive symptoms. Am. J. Gastroenterol. 2009; 104 (2): 392–400. https://doi.org/10.1038/ajg.2008.94

39. Spiller R. C., Jenkins D., Thornley J. P., Hebden J. M., Wright T., Skinner M., Neal K. R. In-creased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut. 2000; 47 (6): 804–11. https://doi.org/10.1136/gut.47.6.804

40. Kim H. S., Lim J. H., Park H., Lee S. I. Increased immunoendocrine cells in intestinal mucosa of postinfectious irritable bowel syndrome patients 3 years after acute Shigella infection – an observation in a small case control study. Yonsei Med. J. 2010; 51 (1): 45–51. https://doi.org/10.3349/ymj.2010.51.1.45

41. Sundin J., Rangel I., Fuentes S., Heikampde Jong I., Hultgren-Hörnquist E., de Vos W. M., Brummer R. J. Altered faecal and mucosal microbial composition in post-infectious irritable bowel syndrome patients correlates with mucosal lymphocyte phenotypes and psychological distress. Aliment. Pharmacol. Ther. 2015; 41 (4): 342–51. https://doi. org/10.1111/apt.13055

42. Dong L. W., Sun X. N., Ma Z. C., Fu J., Liu F. J. et al. Increased Vδ1γδT cells predominantly contributed to IL-17 production in the development of adult human post-infectious irritable bowel syndrome. BMC Gastroenterol. 2021; 21 (1): 271. https://doi.org/10.1186/s12876–021–01722–8

43. Born W. K., Jin N., Aydintug M. K., Wands J. M., French J. D. et al. gamma-delta T lymphocytes-selectable cells within the innate system? J Clin Immunol. 2007; 27 (2): 133–44. https://doi.org/10.1007/s10875–007–9077-z

44. Born W. K., Reardon C. L., O'Brien R. L. The function of gammadelta T cells in innate im-munity. Curr. Opin. Immunol. 2006; 18 (1): 31–8. https://doi.org/10.1016/j.coi.2005.11.007

45. Nizhegorodova D. B., Zafranskaya M. M. γδТ-lymphocytes: general characteristics, subpopulation profile, biological role, and functional features. Med. Immunol. 2009; 11 (3–3): 115–130.

46. Rajilić-Stojanović M., de Vos W. M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014; 38 (5): 996–1047. https://doi.org/10.1111/1574–6976.12075

47. Spiller R. Significance of Postinfectious Irritable Bowel Syndrome? Gastroenterology. 2018: S 0016–5085 (18) 35282-X. https://doi.org/10.1053/j.gastro.2018.11.034

48. Ha S., Jin B., Clemmensen B., Park P., Mahboob S., Gladwill V. et al. Serotonin is elevated in COVID-19-associated diarrhoea. Gut. 2021; 70 (10): 2015–2017. https://doi.org/10.1136/gutjnl-2020–323542

49. Ernstsen L., Havnen A. Mental health and sleep disturbances in physically active adults during the COVID-19 lockdown in Norway: does change in physical activity level matter? Sleep Med. 2021; 77: 309–312. https://doi.org/10.1016/j.sleep.2020.08.030

50. Di Renzo L., Gualtieri P., Pivari F., Soldati L., Attinà A., Cinelli G. et al. Eating habits and lifestyle changes during COVID 19 lockdown: an Italian survey. J. Transl. Med. 2020; 18 (1): 229. https://doi.org/10.1186/s12967–020–02399–5

51. Lima C. K.T., Carvalho P. M.M., Lima I. A.A.S., Nunes J. V.A.O., Saraiva J. S., de Souza R. I. et al. The emotional impact of Coronavirus 2019-nCoV (new Coronavirus disease). Psychiatry Res. 2020; 287: 112915. https://doi.org/10.1016/j.psychres.2020.112915

52. Sidor A., Rzymski P. Dietary Choices and Habits during COVID-19 Lockdown: Experience from Poland. Nutrients. 2020; 12 (6): 1657. https://doi.org/10.3390/nu12061657

53. Batlle-Bayer L., Aldaco R., Bala A., Puig R., Laso J., Margallo M. et al. Environmental and nutritional impacts of dietary changes in Spain during the COVID-19 lockdown. Sci. Total. Environ. 2020; 748: 141410. https://doi.org/10.1016/j.scitotenv.2020.141410

54. Horikawa C., Murayama N., Kojima Y., Tanaka H., Morisaki N. Changes in Selected Food Groups Consumption and Quality of Meals in Japanese School Children during the COVID-19 Pandemic. Nutrients. 2021; 13 (8): 2743. https://doi.org/10.3390/nu13082743

55. Halmos E. P., Power V. A., Shepherd S. J., Gibson P. R., Muir J. G. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology. 2014; 146(1): 67–75. e5. https://doi.org/10.1016/10.1053/j.gastro.2013.09.046

56. Chang F. Y., Lu C. L., Chen C. Y., Luo J. C. Efficacy of dioctahedral smectite in treating patients of diarrhea-predominant irritable bowel syndrome. J Gastroenterol Hepatol. 2007; 22 (12): 2266–72. https://doi.org/10.1111/j.1440–1746.2007.04895.x

57. Drossman D. A., Tack J., Ford A. C., Szigethy E., Törnblom H., Van Oudenhove L. Neuro-modulators for Functional Gastrointestinal Disorders (Disorders of Gut-Brain Interaction): A Rome Foundation Working Team Report. Gastroenterology. 2018; 154 (4): 1140–1171. e1. https://doi.org/10.1053/j.gastro.2017.11.279

58. Ford A. C., Brandt L. J., Young C., Chey W. D., Foxx-Orenstein A.E., Moayyedi P. Efficacy of 5-HT3 antagonists and 5-HT4 agonists in irritable bowel syndrome: systematic review and meta-analysis. Am. J. Gastroenterol. 2009; 104 (7): 1831–43; quiz 1844. https://doi.org/10.1038/ajg.2009.223

59. Ford A. C., Quigley E. M., Lacy B. E., Lembo A. J., Saito Y. A., Schiller L. R. et al. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am. J. Gastroenterol. 2014; 109 (10): 1547–61; quiz 1546, 1562. https://doi.org/10.1038/ajg.2014.202

60. Parker E. A., Roy T., D’Adamo C.R., Wieland L. S. Probiotics and gastrointestinal con-ditions: An overview of evidence from the Cochrane Collaboration. Nutrition. 2018; 45 (2018): 125–134. https://doi.org/10.1016/j.nut.2017.06

61. Li B., Liang L. Deng H., Guo J., Shu H., Zhang L. Efficacy and safety of probiotics in irritable bowel syndrome: a systematic review and meta-analysis. Front Pharmacol. 2020; 11: 332. https://doi.org/10.3389/fphar.2020.00332

62. Global Practice Guidelines of the World Gastroenterology Organization. Probiotics and prebiotics. https://www.worldgastroenterology.org/UserFiles/file/guidelines/probiotics-and-prebiotics-russian-2017.pdf

63. Connel M., Shin A., James-Stevenson T., Xu H., Imperiale T. F., Herron J. Systematic review and meta-analysis: efficacy of patented probiotic, VSL#3, in irritable bowel syn-drome. Neurogastroenterol. Motil. 2018; 30 (12): e13427. https://doi.org/10.1111/nmo

64. Chong P. P., Chin V. K., Looi C. Y., Wong W. F., Madhavan P., Yong V. C. The Micro-biome and Irritable Bowel Syndrome – A Review on the Pathophysiology, Current Research and Future Therapy. Front. Microbiol. 2019; 10: 1136. https://doi.org/10.3389/fmicb.2019.0113

65. Zang R., Gomez Castro M. F., McCune B.T., Zeng Q., Rothlauf P. W. et al. TMPRSS 2 and TMPRSS 4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 2020; 5 (47): eabc3582. https://doi.org/10.1126/sciimmunol.abc3582

66. Turner R. B., Woodfolk J. A., Borish L., Steinke J. W., Patrie J. T., Muehling L. M. et al. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection – a randomised controlled trial. Beneficial Microbes. 2017; 8 (2): 207–215. https://doi.org/10.3920/BM2016.0160

67. Szajewska H., Kołodziej M. Systematic review with meta-analysis: Lactobacillus rham-nosus GG in the prevention of antibiotic-associated diarrhoea in children and adults. Aliment. Pharmacol. Ther. 2015; 42 (10): 1149–1157. https://doi.org/10.1111/apt.13404


Review

For citations:


Gaus O.V., Livzan M.A., Gavrilenko D.A. Post-infectious irritable bowel syndrome: renaissance time? Medical alphabet. 2021;(35):23-28. (In Russ.) https://doi.org/10.33667/2078-5631-2021-35-23-28

Views: 607


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)