Preview

Медицинский алфавит

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Постинфекционный синдром раздраженного кишечника: время ренессанса?

https://doi.org/10.33667/2078-5631-2021-35-23-28

Полный текст:

Аннотация

Постинфекционный синдром раздраженного кишечника (ПИ-СРК) представляет собой отдельный фенотип заболевания, при котором возникновение гастроинтестинальных симптомов, соответствующих диагностическим критериям СРК, находится в прямой хронологической связи с эпизодом острой кишечной инфекции. Длительное время ПИ-СРК рассматривался как исход паразитарной, протозойной или бактериальной инфекции. По мере глобального распространения новой коронавирусной инфекции COVID-19 стала очевидной тенденция к росту числа новых случаев СРК в популяции, что наводит на мысль о ренессансе проблемы ПИ-СРК и заставляет клиницистов по-новому взглянуть на нее. В настоящей публикации обобщены и представлены современные сведения о возможных механизмах развития ПИ-СРК, в том числе у лиц, перенесших COVID-19.

Об авторах

О. В. Гаус
ФГБОУ ВО Омский государственный медицинский университет Минздрава России
Россия

Гаус Ольга Владимировна - кандидат медицинских наук, доцент кафедры факультетской терапии и гастроэнтерологии, Scopus ID: 56598554900.

Омск



М. А. Ливзан
ФГБОУ ВО Омский государственный медицинский университет Минздрава России
Россия

Ливзан Мария Анатольевна - доктор медицинских наук, профессор, ректор, зав. кафедрой факультетской терапии и гастроэнтерологии, Scopus ID: 24341682600.

Омск



Д. А. Гавриленко
ФГБОУ ВО Омский государственный медицинский университет Минздрава России
Россия

Гавриленко Дарья Александровна - студентка V курса лечебного факультета.

Омск



Список литературы

1. Ивашкин В. Т., Шелыгин Ю. А., Баранская Е. К., Белоусова Е. А., Бениашвили А. Г., Васильев С. В. и др. Клинические рекомендации Российской гастроэнтерологической ассоциации, Ассоциации колопроктологов России по диагностике и лечению больных с синдромом раздраженного кишечника. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2017; 27 (5): 76–93. https://doi.org/10.22416/1382–4376–2017–27–5–76–93

2. Flacco M. E., Manzoli L., De Giorgio R., Gasbarrini A., Cicchetti A., Bravi F. et al. Costs of irritable bowel syndrome in European countries with universal healthcare cover-age: a meta-analysis. Eur. Rev. Med. Pharmacol. 2019; 23 (7): 2986–3000. https://doi.org/10.26355/eurrev_201904_17580

3. Peery A. F., Crockett S. D., Murphy C. C., Lund J. L., Dellon E. S., Williams J. L., et al. Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. Gastroenterology. 2019; 156 (1): 254–272.e11. https://doi.org/10.1053/j.gastro.2018.08.063

4. Barbara G., Grover M., Bercik P., Corsetti M., Ghoshal U. C., Ohman L., Rajilić-Stojanović M. Rome Foundation Working Team Report on Post-Infection Irritable Bowel Syndrome. Gastroenterology. 2019; 156 (1): 46–58.e7. https://doi.org/10.1053/j.gastro.2018.07.011

5. Chaudhary N. A., Truelove S. C. The irritable colon syndrome. A study of the clinical fea-tures, predisposing causes, and prognosis in 130 cases. Q. J. Med. 1962; (31): 307–322.

6. Thabane M., Marshall J. K. Post-infectious irritable bowel syndrome. World. J. Gastro-enterol. 2009; 15 (29): 3591–6. https://doi.org/10.3748/wjg.15.3591

7. Klem F., Wadhwa A., Prokop L. J., Sundt W. J., Farrugia G., Camilleri M. et al. Prevalence, Risk Factors, and Outcomes of Irritable Bowel Syndrome After Infectious Enteritis: A Systematic Review and Meta-analysis. Gastroenterology. 2017; 152 (5): 1042–1054.e1. https://doi.org/10.1053/j.gastro.2016.12.039

8. Marshall J. K., Thabane M., Garg A. X., Clark W. F., Salvadori M., Collins S. M. Walkerton Health Study Investigators. Incidence and epidemiology of irritable bowel syndrome after a large waterborne outbreak of bacterial dysentery. Gastroenterology. 2006; 131 (2): 445–50; quiz 660. https://doi.org/10.1053/j.gastro.2006.05.053

9. Neal K. R., Hebden J., Spiller R. Prevalence of gastrointestinal symptoms six months after bacterial gastroenteritis and risk factors for development of the irritable bowel syndrome: postal survey of patients. BMJ. 1997; 314 (7083): 779–82. https://doi.org/10.1136/bmj.314.7083.779

10. Cremon C., Stanghellini V., Pallotti F., Fogacci E., Bellacosa L., Morselli-Labate A.M. et al. Salmonella gastroenteritis during childhood is a risk factor for irritable bowel syndrome in adulthood. Gastroenterology. 2014; 147 (1): 69–77. https://doi.org/10.1053/j.gastro.2014.03.013

11. Nielsen H. L., Engberg J., Ejlertsen T., Nielsen H. Psychometric scores and persistence of irritable bowel after Campylobacter concisus infection. Scand J Gastroenterol. 2014; 49 (5): 545–51. https://doi.org/10.3109/00365521.2014.886718

12. Ruigomez A., García Rodriguez L. A., Panes J. Risk of irritable bowel syndrome after an episode of bacterial gastroenteritis in general practice: influence of comorbidities. Clin Gastroenterol Hepatol. 2007; 5 (4): 465–9. https://doi.org/10.1016/j.cgh.2007.02.008

13. Thabane M., Simunovic M., Akhtar-Danesh N., Garg A. X., Clark W. F., Collins S. M. et al. An outbreak of acute bacterial gastroenteritis is associated with an increased incidence of irritable bowel syndrome in children. Am J Gastroenterol. 2010; 105 (4): 933–9. https://doi.org/10.1038/ajg.2010.74

14. Koh S. J., Lee D. H., Lee S. H., Park Y. S., Hwang J. H., Kim J. W. et al. Incidence and risk factors of irritable bowel syndrome in community subjects with cultureproven bacterial gastroenteritis. Korean J. Gastroenterol. 2012; 60 (1): 13–8. https://doi.org/10.4166/kjg.2012.60.1.13

15. Törnblom H., Holmvall P., Svenungsson B., Lindberg G. Gastrointestinal symptoms after infectious diarrhea: a five-year follow-up in a Swedish cohort of adults. Clin. Gastroenterol. Hepatol. 2007 Apr; 5 (4): 461–4. https://doi.org/10.1016/j.cgh.2007.01.007

16. Ruigomez A., Garcia Rodriguez L. A., Panes J. Risk of irritable bowel syndrome after an episode of bacterial gastroenteritis in general practice: influence of comorbidities. Clin Gastroenterol Hepatol. 2007; 5 (4): 465–469. https://doi.org/10.1016/j.cgh.2007.02.008

17. Pitzurra R. Fried M., Rogler G., Rammert C., Tschopp A., Hatz C. et al. irritable bowel syndrome among a cohort of European travelers to resource-limited destinations.

18. J. Travel. Med. 2011; 18 (4): 250–6. https://doi.org/10.1111/j.1708–8305.2011.00529.x

19. Thabane M., Simunovic M., Akhtar-Danesh N., Garg A. X., Clark W. F., Collins S. M. et al. An outbreak of acute bacterial gastroenteritis is associated with an increased incidence of irritable bowel syndrome in children. Am J Gastroenterol. 2010 Apr; 105 (4): 933–9. https://doi.org/10.1038/ajg.2010.74

20. Nielsen H. L., Engberg J., Ejlertsen T., Nielsen H. Psychometric scores and persistence of irritable bowel after Campylobacter concisus infection. Scand J Gastroenterol. 2014; 49 (5): 545–51. https://doi.org/10.3109/00365521.2014.886718

21. Zhang Y., Li L., Guo C., Mu D., Feng B., Zuo X., et al. Effects of probiotic type, dose and treatment duration on irritable bowel syndrome diagnosed by Rome III criteria: A meta-analysis. BMC Gastroenterol. 2016; 16: 62.

22. Pinto-Sanchez M.I., Smecuol E. C., Temprano M. P., Sugai E., Gonzalez A., Moreno M. L. et al. Bifidobacterium infantis NLS super strain reduces the expression of alpha-Defensin-5, a marker of innate immunity, in the mucosa of active celiac disease patients. J. Clin. Gastroenterol. 2017; 51: 814–817. https://doi.org/10.1097/MCG.0000000000000687

23. Quek S. X.Z., Loo E. X.L., Demutska A., Chua C. E., Kew G. S., Wong S. et al. Impact of the coronavirus disease 2019 pandemic on irritable bowel syndrome. J Gastroenterol Hepatol. 2021; 36 (8): 2187–2197. https://doi.org/10.1111/jgh.15466

24. Effenberger M., Grabherr F. Mayr L., Schwaerzler J., Nairz M., Seifert M. et al. Faecal calprotectin indicates intestinal inflammation in COVID-19. Gut. 2020; 69 (8): 1543–1544. https://doi.org/10.1136/gutjnl-2020–321388

25. Han C., Duan C., Zhang S., Spiegel B., Shi H., Wang W. et al. Digestive Symptoms in COVID-19 Patients with Mild Disease Severity: Clinical Presentation, Stool Viral RNA Testing, and Outcomes. Am J Gastroenterol. 2020; 115 (6): 916–923. https://doi.org/10.14309/ajg.0000000000000664

26. Spiller R. Significance of Postinfectious Irritable Bowel Syndrome? Gastroenterology. 2018: S 0016–5085 (18) 35282-X. https://doi.org/10.1053/j.gastro.2018.11.034

27. Yang W., Cong Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell. Mol. Immunol. 2021; 18 (4): 866–877. https://doi.org/10.1038/s41423–021–00661–428

28. Azad M. A.K., Sarker M., Wan D. Immunomodulatory Effects of Probiotics on Cytokine Profiles. Biomed. Res. Int. 2018; 2018: 8063647. https://doi.org/10.1155/2018/8063647

29. Faith J. J., Guruge J. L., Charbonneau M., Subramanian S., Seedorf H., Goodman A. L. et al. The long-term stability of the human gut microbiota. Science. 2013; 341 (6141): 1237439. https://doi.org/10.1126/science.1237439

30. Dicksved J., Ellström P., Engstrand L., Rautelin H. Susceptibility to Campylobacter infection is associated with the species composition of the human fecal microbiota. mBio. 2014; 5 (5): e01212–14. https://doi.org/10.1128/mBio.01212–14

31. Chong P. P., Chin V. K., Looi C. Y., Wong W. F., Madhavan P., Yong V. C. The Microbiome and Irritable Bowel Syndrome – A Review on the Pathophysiology, Current Research and Future Therapy. Front. Microbiol. 2019; 10: 1136. https://doi.org/10.3389/fmicb.2019.01136

32. Carroll I. M., Ringel-Kulka T., Siddle J. P., Ringel Y. Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil. 2012; 24 (6): 521–30, e248. https://doi.org/10.1111/j.1365–2982.2012.01891.x

33. Zuo T. Zhang F., Lui G. C.Y., Yeoh Y. K., Li A. Y.L., Zhan H. et al. Alterations in Gut Microbi-ota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020; 159 (3): 944–955.e8. https://doi.org/10.1053/j.gastro.2020.05.048

34. Schmulson M., Davalos M. F., Berumen J. Beware: Gastrointestinal symptoms can be a manifestation of COVID-19. Rev. Gastroenterol. Mex. (Engl Ed). 2020; 85 (3): 282–287. https://doi.org/10.1016/j.rgmx.2020.04.001

35. Marshall J. K., Thabane M., Garg A. X., Clark W., Meddings J., Collins S. M.; WEL Investigators. Intestinal permeability in patients with irritable bowel syndrome after a waterborne outbreak of acute gastroenteritis in Walkerton, Ontario. Aliment. Pharmacol. Ther. 2004; 20 (11–12): 1317–22. https://doi.org/10.1111/j.1365–2036.2004.02284.x

36. Long Y., Du L., Kim J. J., Chen B., Zhu Y., Zhang Y. et al. MLCK-mediated intestinal permeability promotes immune activation and visceral hypersensitivity in PI–IBS mice. Neurogastroenterol. Motil. 2018; 30 (9): e13348. https://doi.org/doi:10.1111/nmo.13348

37. Du L., Long Y, Kim JJ, Chen B, Zhu Y, Dai N. Protease Activated Receptor-2 Induces Immune Activation and Visceral Hypersensitivity in Post-infectious Irritable Bowel Syndrome Mice. Dig Dis Sci. 2019; 64 (3): 729–739. https://doi.org/10.1007/s10620–018–5367-y

38. Wang L. H., Fang X. C., Pan G. Z. Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis. Gut. 2004; 53 (8): 1096–101. https://doi.org/10.1136/gut.2003.021154

39. Cremon C., Gargano L., Morselli-Labate A.M., Santini D., Cogliandro R. F., De Giorgio R. et al. Mucosal immune activation in irritable bowel syndrome: gender-dependence and association with digestive symptoms. Am. J. Gastroenterol. 2009; 104 (2): 392–400. https://doi.org/10.1038/ajg.2008.94

40. Spiller R. C., Jenkins D., Thornley J. P., Hebden J. M., Wright T., Skinner M., Neal K. R. In-creased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut. 2000; 47 (6): 804–11. https://doi.org/10.1136/gut.47.6.804

41. Kim H. S., Lim J. H., Park H., Lee S. I. Increased immunoendocrine cells in intestinal mu-cosa of postinfectious irritable bowel syndrome patients 3 years after acute Shigella infection – an observation in a small case control study. Yonsei Med. J. 2010; 51 (1): 45–51. https://doi.org/10.3349/ymj.2010.51.1.45

42. Sundin J., Rangel I., Fuentes S., Heikamp-de Jong I., Hultgren-Hörnquist E., de Vos W. M., Brummer R. J. Altered faecal and mucosal microbial composition in post-infectious irritable bowel syndrome patients correlates with mucosal lymphocyte phenotypes and psychological distress. Aliment. Pharmacol. Ther. 2015; 41 (4): 342–51. https://doi.org/10.1111/apt.13055

43. Dong L. W., Sun X. N., Ma Z. C., Fu J., Liu F. J. et al. Increased Vδ1γδT cells predominantly contributed to IL-17 production in the development of adult human post-infectious irritable bowel syndrome. BMC Gastroenterol. 2021; 21 (1): 271. https://doi.org/10.1186/s12876–021–01722–8

44. Born W. K., Jin N., Aydintug M. K., Wands J. M., French J. D. et al. gamma-delta T lymphocytes-selectable cells within the innate system? J Clin Immunol. 2007; 27 (2): 133–44. https://doi.org/10.1007/s10875–007–9077-z

45. Born W. K., Reardon C. L., O'Brien R. L. The function of gammadelta T cells in innate im-munity. Curr. Opin. Immunol. 2006; 18 (1): 31–8. https://doi.org/10.1016/j.coi.2005.11.007

46. Нижегородова Д. Б., Зафранская М. М. γδТ-лимфоциты: общая характеристика, субпопуляционный состав, биологическая роль и функциональные особенности. Медицинская иммунология. 2009; 11 (3–3): 115–130.

47. Rajilić-Stojanović M., de Vos W. M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014; 38 (5): 996–1047. https://doi.org/10.1111/1574–6976.12075

48. Spiller R. Significance of Postinfectious Irritable Bowel Syndrome? Gastroenterology. 2018: S 0016–5085 (18) 35282-X. https://doi.org/10.1053/j.gastro.2018.11.034

49. Ha S., Jin B., Clemmensen B., Park P., Mahboob S., Gladwill V. et al. Serotonin is elevated in COVID-19-associated diarrhoea. Gut. 2021; 70 (10): 2015–2017. https://doi.org/10.1136/gutjnl-2020–323542

50. Ernstsen L., Havnen A. Mental health and sleep disturbances in physically active adults during the COVID-19 lockdown in Norway: does change in physical activity level matter? Sleep Med. 2021; 77: 309–312. https://doi.org/10.1016/j.sleep.2020.08.030

51. Di Renzo L., Gualtieri P., Pivari F., Soldati L., Attinà A., Cinelli G. et al. Eating habits and lifestyle changes during COVID 19 lockdown: an Italian survey. J. Transl. Med. 2020; 18 (1): 229. https://doi.org/10.1186/s12967–020–02399–5

52. Lima C. K.T., Carvalho P. M.M., Lima I. A.A.S., Nunes J. V.A.O., Saraiva J. S., de Souza R. I. et al. The emotional impact of Coronavirus 2019-nCoV (new Coronavirus disease). Psychiatry Res. 2020; 287: 112915. https://doi.org/10.1016/j.psychres.2020.112915

53. Sidor A., Rzymski P. Dietary Choices and Habits during COVID-19 Lockdown: Experience from Poland. Nutrients. 2020; 12 (6): 1657. https://doi.org/10.3390/nu12061657

54. Batlle-Bayer L., Aldaco R., Bala A., Puig R., Laso J., Margallo M. et al. Environmental and nutritional impacts of dietary changes in Spain during the COVID-19 lockdown. Sci. Total. Environ. 2020; 748: 141410. https://doi.org/10.1016/j.scitotenv.2020.141410

55. Horikawa C., Murayama N., Kojima Y., Tanaka H., Morisaki N. Changes in Selected Food Groups Consumption and Quality of Meals in Japanese School Children during the COVID-19 Pandemic. Nutrients. 2021; 13 (8): 2743. https://doi.org/10.3390/nu13082743

56. Halmos E. P., Power V. A., Shepherd S. J., Gibson P. R., Muir J. G. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology. 2014; 146(1): 67–75. e5. https://doi.org/10.1016/10.1053/j.gastro.2013.09.046

57. Chang F. Y., Lu C. L., Chen C. Y., Luo J. C. Efficacy of dioctahedral smectite in treating patients of diarrhea-predominant irritable bowel syndrome. J Gastroenterol Hepatol. 2007; 22 (12): 2266–72. https://doi.org/10.1111/j.1440–1746.2007.04895.x

58. Drossman D. A., Tack J., Ford A. C., Szigethy E., Törnblom H., Van Oudenhove L. Neuro-modulators for Functional Gastrointestinal Disorders (Disorders of Gut-Brain Interaction): A Rome Foundation Working Team Report. Gastroenterology. 2018; 154 (4): 1140–1171. e1. https://doi.org/10.1053/j.gastro.2017.11.279

59. Ford A. C., Brandt L. J., Young C., Chey W. D., Foxx-Orenstein A.E., Moayyedi P. Efficacy of 5-HT3 antagonists and 5-HT4 agonists in irritable bowel syndrome: systematic review and meta-analysis. Am. J. Gastroenterol. 2009; 104 (7): 1831–43; quiz 1844. https://doi.org/10.1038/ajg.2009.223

60. Ford A. C., Quigley E. M., Lacy B. E., Lembo A. J., Saito Y. A., Schiller L. R. et al. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am. J. Gastroenterol. 2014; 109 (10): 1547–61; quiz 1546, 1562. https://doi.org/10.1038/ajg.2014.202

61. Parker E. A., Roy T., D’Adamo C.R., Wieland L. S. Probiotics and gastrointestinal con-ditions: An overview of evidence from the Cochrane Collaboration. Nutrition. 2018; 45 (2018): 125–134. https://doi.org/10.1016/j.nut.2017.06

62. Li B., Liang L. Deng H., Guo J., Shu H., Zhang L. Efficacy and safety of probiotics in irritable bowel syndrome: a systematic review and meta-analysis. Front Pharmacol. 2020; 11: 332. https://doi.org/10.3389/fphar.2020.00332

63. Глобальные практические рекомендации Всемирной гастроэнтерологической организации. Пробиотики и пребиотики. https://www.worldgastroenterology.org/UserFiles/file/guidelines/probiotics-and-prebiotics-russian-2017.pdf

64. Connel M., Shin A., James-Stevenson T., Xu H., Imperiale T. F., Herron J. Systematic review and meta-analysis: efficacy of patented probiotic, VSL#3, in irritable bowel syn-drome. Neurogastroenterol. Motil. 2018; 30 (12): e13427. https://doi.org/10.1111/nmo

65. Chong P. P., Chin V. K., Looi C. Y., Wong W. F., Madhavan P., Yong V. C. The Micro-biome and Irritable Bowel Syndrome – A Review on the Pathophysiology, Current Research and Future Therapy. Front. Microbiol. 2019; 10: 1136. https://doi.org/10.3389/fmicb.2019.0113

66. Zang R., Gomez Castro M. F., McCune B.T., Zeng Q., Rothlauf P. W. et al. TMPRSS 2 and TMPRSS 4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 2020; 5 (47): eabc3582. https://doi.org/10.1126/sciimmunol.abc3582

67. Turner R. B., Woodfolk J. A., Borish L., Steinke J. W., Patrie J. T., Muehling L. M. et al. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection – a randomised controlled trial. Beneficial Microbes. 2017; 8 (2): 207–215. https://doi.org/10.3920/BM2016.0160

68. Szajewska H., Kołodziej M. Systematic review with meta-analysis: Lactobacillus rham-nosus GG in the prevention of antibiotic-associated diarrhoea in children and adults. Aliment. Pharmacol. Ther. 2015; 42 (10): 1149–1157. https://doi.org/10.1111/apt.13404


Для цитирования:


Гаус О.В., Ливзан М.А., Гавриленко Д.А. Постинфекционный синдром раздраженного кишечника: время ренессанса? Медицинский алфавит. 2021;(35):23-28. https://doi.org/10.33667/2078-5631-2021-35-23-28

For citation:


Gaus O.V., Livzan M.A., Gavrilenko D.A. Post-infectious irritable bowel syndrome: renaissance time? Medical alphabet. 2021;(35):23-28. (In Russ.) https://doi.org/10.33667/2078-5631-2021-35-23-28

Просмотров: 44


ISSN 2078-5631 (Print)