Preview

Медицинский алфавит

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Патологический ангиогенез при псориазе и псориатическом артрите: патогенетическое значение и терапевтические перспективы

https://doi.org/10.33667/2078-5631-2021-33-58-63

Полный текст:

Аннотация

В литературном обзоре представлены данные о роли патологического ангиогенеза в развитии псориаза и псориатического артрита. Ряд недавних исследований показали, что, кроме цитокинового дисбаланса и активации Т-клеточного звена иммунитета, важным патогенетическим звеном этих заболеваний является патологическая васкуляризация. Сосудистые изменения в дерме появляются раньше клинически видимых кожных проявлений и могут длительно сохраняться после лечения, так же, как и явления неоангиогенеза в синовиальной оболочке и энтезисах способствуют хронизации воспалительного процесса при псориатическом артрите. В работе представлен обзор современной литературы, посвященной главному регулятору ангиогенеза – фактору роста эндотелия сосудов, его роли в патогенезе псориаза и возможным терапевтическим перспективам.

Об авторах

О. А. Притуло
Институт «Медицинская академия имени С. И. Георгиевского» ФГАОУ ВО «Крымский федеральный университет имени В. И. Вернадского»
Россия

Притуло Ольга Александровна, д. м. н., проф., главный внештатный специалист-дерматовенеролог Минздрава Республики Крым, зав. кафедрой дерматовенерологии и косметологии

г. Симферополь, Республика Крым



А. А. Петров
Институт «Медицинская академия имени С. И. Георгиевского» ФГАОУ ВО «Крымский федеральный университет имени В. И. Вернадского»
Россия

Петров Алексей Андреевич, аспирант кафедры дерматовенерологии и косметологии

г. Симферополь, Республика Крым



Список литературы

1. Кубанов А.А., Карамова А.Э., Артамонова О.Г. Новые возможности в лечении псориаза и псориатического артрита. Научно-практическая ревматология. 2018; 56 (6): 722–726. https://doi.org/10.14412/1995–4484–2018–722–726

2. Коротаева Т.В. Ангиогенез при псориазе и псориатическом артрите: клеточные и гуморальные механизмы, роль в патогенезе и поиск перспективных мишеней терапии. Современная ревматология. 2014; 8 (2): 71–75. https://doi.org/10.14412/1996–7012–2014–2–71–75

3. Weigle N., McBane S. Psoriasis. Am Fam Physician. 2013. 87 (9): 626–633.

4. Kimball A.B., Leonardi C., Stahle M., et al. Demography, baseline disease characteristics and treatment history of patients with psoriasis enrolled in a multicentre, prospective, disease-based registry (PSOLAR). Br J Dermatol. 2014; 171 (1): 137–147. https://doi.org/10.1111/bjd.13013

5. Elder J.T. Expanded Genome-Wide Association Study Meta-Analysis of Psoriasis Expands the Catalog of Common Psoriasis-Associated Variants. J Investig Dermatol Symp Proc. 2018 Dec; 19 (2): S77–S78. https://doi.org/10.1016/j.jisp.2018.09.005

6. Gudjonsson J.E. et al. Psoriasis patients who are homozygous for the HLA-Cw*0602 allele have a 2.5-fold increased risk of developing psoriasis com- pared with Cw6 heterozygotes. Br. J. Dermatol. 2003; 148: 233–235. https://doi.org/10.1046/j.1365–2133.2003.05115.x

7. Capon F. The Genetic Basis of Psoriasis. Int. J. Mol. Sci. 2017; 18: 2526. https://doi.org/10.3390/ijms18122526

8. Morizane S., Gallo R.L. Antimicrobial peptides in the pathogenesis of psoriasis. J. Dermatol. 2012; 39: 225–30. https://doi.org/10.1111/j.1346–8138.2011.01483.x

9. Morizane S., Yamasaki K., Muhleisen B. et al. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR 9 ligands. J. Invest. Dermatol. 2012; 132: 135–43. https://doi.org/10.1038/jid.2011.259

10. Heidenreich R., Röcken M., Ghoreschi K. Angiogenesis drives psoriasis pathogenesis. International Journal of Experimental Pathology, International Journal of Experimental Pathology. 2009; 90: 232–248. https://doi.org/10.1111/j.1365–2613.2009.00669.x

11. Wang X., Sun X., Qu X. et al. Overexpressed fbulin-3 contributes to the pathogenesis of psoriasis by promoting angiogenesis. Clin Exp Dermatol. 2018 [Epub ahead of print]. https://doi.org/10.1111/ ced.13720

12. Kaliyadan F. The dermatoscopic auspitz sign. Indian Dermatol. Online J. 2018, 9, 290–291. https://doi.org/10.4103/idoj.IDOJ_309_17

13. Sankar L., Arumugam D., Boj S., et al. Expression of angiogenic factors in psoriasis vulgaris. J Clin Diagn Res. 2017; 11 (3): EC23–EC27. https://doi.org/10.7860/JCDR/2017/23039.9525

14. Namiecinska M., Marciniak K., Nowak J.Z. VEGF as an angiogenic, neurotrophic, and neuroprotective factor. Postepy Hig Med Dosw (Online). 2005; 59: 573–583.

15. Malecic N., Young H. S. Excessive angiogenesis associated with psoriasis as a cause for cardiovascular ischaemia. Exp Dermatol. 2017; 26 (4): 299–304. https://doi.org/10.1111/exd.13310.

16. Holubar K., Fatović-Ferencić S. Papillary tip bleeding or the Auspitz phenomenon: A hero wrongly credited and a misnomer resolved. Journal of the American Academy of Dermatology. 48. 263–4. https://doi.org/10.1067/mjd.2003.89.

17. Veale D., Yanni G., Rogers S., L. et al. Reduced synovial membrane macrophage numbers, elam-1 expression, and lining layer hyperplasia in psoriatic arthritis as compared with rheumatoid arthritis. Arthritis & Rheumatism. 1993; Vol. 36, No. 7, pp. 893–900. https://doi.org/10.1002/art.1780360705

18. Reece R. J., Canete J. D., Parsons W. J. et al. Distinct vascular patterns of early synovitis in psoriatic, reactive, and rheumatoid arthritis. Arthritis and Rheumatism. 1999; Vol. 42, No. 7, pp. 1481–1484. https://doi.org/10.1002/1529–0131(199907)42:7<1481:: AID-ANR23>3.0.CO;2-E

19. Pepper M.S. Manipulating angiogenesis: from basic science to the bedside. Arteriosclerosis, Thrombosis, and Vascular Biology. 1997; Vol. 17, No. 4, pp. 605–619. https://doi.org/10.1161/01.ATV.17.4.605

20. O’Reilly M.S., Boehm T., Shing Y. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997; Vol. 88, No. 2, pp. 277–285. https://doi.org/10.1016/s0092–8674(00)81848–6

21. W. Risau. Mechanisms of angiogenesis. Nature. 1997; Vol. 386, No. 6626, pp. 671–674.

22. Gerkowicz A., Socha M., Pietrzak A., et al. The role of VEGF in psoriasis: an update. Acta Angiologica 2018; 24 (4): 134–140. https://doi.org/10.5603/AA.2018.0019

23. Tomanek R.J., Holifeld J.S., Reiter R.S. et al. Role of VEGF family members and receptors in coronary vessel formation. Dev. Dyn. 2002. 225. 233–240. https://doi.org/10.1002/dvdy.10158

24. Melincovici C.S., Boşca A.B., Şuşman S., et al. Vascular endothelial growth factor (VEGF) – key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018; 59 (2): 455–467.

25. Kim, J., Kong, JS., Lee, S. et al. Angiogenic cytokines can reflect the synovitis severity and treatment response to biologics in rheumatoid arthritis. Exp Mol Med 2020. 52, 843–853. https://doi.org/10.1038/s12276–020–0443–8

26. Young H.S., Kamaly-Asl I.D., et al. Genetic interaction between placenta growth factor (PGF) and vascular endothelial growth factor A (VEGFA) in psoriasis. Clinical and Experimental Dermatology. 2019. 45 (3). https://doi.org/10.1111/ced.14102

27. Xu M., Hua Y., Qi Y., Meng G., Yang S. Exogenous hydrogen sulphide supplement accelerates skin wound healing via oxidative stress inhibition and vascular endothelial growth factor enhancement. Exp Dermatol. 2019; 28 (7): 776–785. https://doi.org/10.1111/exd.13930

28. Detmar M. The role of VEGF and thrombospondins in skin angiogenesis. J Dermatol Sci. 2000; 24 Suppl 1: S78–S84. https://doi.org/10.1016/s0923–1811(00)00145–6

29. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005; 69 Suppl 3: 4–10. https://doi.org/10.1159/000088478

30. Carmeliet P., Jain R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011; 473 (7347): 298–307. https://doi.org/10.1038/nature10144

31. Honorati M.C., Cattini L., Facchini A. IL-17, IL-1beta and TNF-alpha stimulate VEGF production by dedifferentiated chondro- cytes. Osteoarthritis Cartilage. 2004; 12(9): 683–691. https://doi.org/10.1016/j.joca.2004.05.009

32. Hori R., Nakagawa T., Yamamoto N. et al. Role of prostaglandin E receptor subtypes EP2 and EP4 in autocrine and paracrine functions of vascular endothelial growth factor in the inner ear. BMC Neurosci. 2010; 11: 35. https://doi.org/10.1186/1471–2202–11–35

33. Yamazaki Y., Morita T. Molecular and functional diversity of vascular endothelial growth factors. Mol Divers. 2006; 10 (4): 515–527. https://doi.org/10.1007/s11030–006–9027–3

34. Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol. 2006; 39 (5): 469–478. https://doi.org/10.5483/bmbrep.2006.39.5.469

35. Neufeld G., Cohen T., Shraga N., Lange T., Kessler O., Herzog Y. The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc Med. 2002; 12 (1): 13–19. https://doi.org/10.1016/s1050–1738(01)00140–2

36. Marina M.E., Roman I.I., Constantin A.M., et al. VEGF involvement in psoriasis. Clujul Med. 2015; 88 (3): 247–252. https://doi.org/10.15386/cjmed-494

37. Veikkola T., Karkkainen M., Claesson-Welsh L., et al. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res. 2000. 60 (2): 203–212.

38. Herzog B., Pellet-Many C., Britton G. et al. VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation. Mol Biol Cell. 2011; 22 (15): 2766–2776. https://doi.org/10.1091/mbc.E09–12–1061

39. Parker M.W., Linkugel A.D., Goel H.L., et al. Structural basis for VEGF-C binding to neuropilin-2 and sequestration by a soluble splice form. Structure. 2015; 23 (4):677–687. https://doi.org/10.1016/j.str.2015.01.018

40. Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009; 29 (6): 789–791. https://doi.org/10.1161/ATVBAHA.108.179663

41. Carmeliet P. VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nat Med. 2000; 6 (10): 1102–1103. https://doi.org/10.1038/80430

42. Lee S., Jilani S.M., Nikolova G.V., et al. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol. 2005; 169 (4): 681–691. https://doi.org/10.1083/jcb.200409115

43. Baek J., Jang J. E., Kang C. M. et al. Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene. 2000. 19, 4621–4631. https://doi.org/10.1038/sj.onc.1203814

44. Ferrara N., Gerber H.P., LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003; 9 (6): 669–676. https://doi.org/10.1038/nm0603–669

45. Kuzuya M., Ramos M.A., Kanda S., et al. VEGF protects against oxidized LDL toxicity to endothelial cells by an intracellular glutathione-dependent mechanism through the KDR receptor. Arterioscler Thromb Vasc Biol. 2001; 21 (5): 765–770. https://doi.org/10.1161/01.atv.21.5.765

46. Tammela T., Enholm B., Alitalo K., Paavonen K. The biology of vascular endothelial growth factors. Cardiovasc Res. 2005; 65 (3): 550–563. https://doi.org/10.1016/j.cardiores.2004.12.002

47. Yang J., Yan J., Liu B. Targeting VEGF/VEGFR to modulate antitumor immunity. Front. Immunol., 2018, Vol. 9, p. 978. https://doi.org/10.3389/fmmu.2018.00978

48. Voron T., Marcheteau E., Pernot S., Colussi O., Tartour E., Taieb J., Terme M. Control of the immune response by pro-angiogenic factors. Front Oncol., 2014, Vol. 4, p. 70. https://doi.org/10.3389/fonc.2014.00070

49. Detmar M., Brown L.F., Schön M.P., et al. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol. 1998; 111 (1): 1–6. https://doi.org/10.1046/j.1523–1747.1998.00262.x

50. Xia Y.P., Li B., Hylton D., et al. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood. 2003; 102 (1): 161–168. https://doi.org/10.1182/blood-2002–12–3793

51. Simonetti O., Lucarini G., Goteri G., et al. VEGF is likely a key factor in the link between inflammation and angiogenesis in psoriasis: results of an immunohistochemical study. Int J Immunopathol Pharmacol. 2006; 19 (4): 751–760. https://doi.org/10.1177/039463200601900405

52. Rashed H., El-Bary E.A. Immunohistochemical evaluation of VEGF, surviving, bcl-2 protein and iNOS in the pathogenesis of psoriasis. Egyptian Journal of Pathology. 2012; 32 (1): 91–98. https://doi.org/10.1097/01.xej.0000417556.36570.93.

53. Liew S.C., Das-Gupta E., Chakravarthi S., et al. Differential expression of the angiogenesis growth factors in psoriasis vulgaris. BMC Res Notes. 2012; 5: 201. https://doi.org/10.1186/1756–0500–5–201

54. Moustou A.E., Alexandrou P., Stratigos A.J., et al. Expression of lymphatic markers and lymphatic growth factors in psoriasis before and after anti-TNF treatment. An Bras Dermatol. 2014; 89 (6): 891–897. https://doi.org/10.1590/abd1806–4841.20143210

55. Man X.Y., Yang X.H., Cai S.Q., et al. Immunolocalization and expression of vascular endothelial growth factor receptors (VEGFRs) and neuropilins (NRPs) on keratinocytes in human epidermis. Mol Med. 2006; 12 (7–8): 127–136. https://doi.org/10.2119/2006–00024

56. Man X. Y., Yang X. H., Cai S. Q., et al. Overexpression of vascular endothelial growth factor (VEGF) receptors on keratinocytes in psoriasis: regulated by calcium independent of VEGF. J Cell Mol Med. 2008; 12 (2): 649–660. https://doi.org/10.1111/j.1582–4934.2007.00112.x

57. Jiang M., Li B., Zhang J., et al. Vascular endothelial growth factor driving aberrant keratin expression pattern contributes to the pathogenesis of psoriasis. Exp Cell Res. 2017; 360 (2): 310–319. https://doi.org/10.1016/j.yexcr.2017.09.021

58. Flisiak I., Zaniewski P., Rogalska M., et al. Effect of psoriasis activity on VEGF and its soluble receptors concentrations in serum and plaque scales. Cytokine. 2010; 52 (3): 225–229. https://doi.org/10.1016/j.cyto.2010.09.012

59. Meki AR, Al-Shobaili H. Serum vascular endothelial growth factor, transforming growth factor β1, and nitric oxide levels in patients with psoriasis vulgaris: their correlation to disease severity. J Clin Lab Anal. 2014; 28 (6): 496–501. https://doi.org/10.1002/jcla.21717

60. Andrys C., Borska L., Pohl D., et al. Angiogenic activity in patients with psoriasis is signifcantly decreased by Goeckerman’s therapy. Arch Dermatol Res. 2007; 298 (10): 479–483. https://doi.org/10.1007/s00403–006–0723–8

61. Akman A., Dicle O., Yilmaz F., et al. Discrepant levels of vascular endothelial growth factor in psoriasis patients treated with PUVA, Re-PUVA and narrow-band UVB. Photodermatol Photo-immunol Photomed. 2008; 24 (3): 123–127. https://doi.org/10.1111/j.1600–0781.2008.00349.x

62. Sudhesan A., Rajappa M., Chandrashekar L., et al. Vascular endothelial growth factor (VEGF) gene polymorphisms (rs699947, rs833061, and rs2010963) and psoriatic risk in South Indian Tamils. Hum Immunol. 2017; 78 (10): 657–663. https://doi.org/10.1016/j.humimm.2017.08.004

63. Young H.S., Summers A.M., Read I.R., et al. Interaction between genetic control of vascular endothelial growth factor production and retinoid responsiveness in psoriasis. J Invest Dermatol. 2006; 126 (2): 453–459. https://doi.org/10.1038/sj.jid.5700096

64. Young H.S., Summers A.M., Bhushan M., et al. Single-nucleotide polymorphisms of vascular endothelial growth factor in psoriasis of early onset. J Invest Dermatol. 2004; 122 (1): 209–215. https://doi.org/10.1046/j.0022–202X.2003.22107.x

65. Li Y., Su J., Li F., et al. MiR-150 regulates human keratinocyte proliferation in hypoxic conditions through targeting HIF-1α and VEGFA: Implications for psoriasis treatment. PLoS One. 2017; 12 (4): e0175459. https://doi.org/10.1371/journal.pone.0175459

66. Zheng Y.Z., Chen C.F., Jia L.Y., et al. Correlation between microRNA-143 in peripheral blood mononuclear cells and disease severity in patients with psoriasis vulgaris. Oncotarget. 2017; 8 (31): 51288–51295. https://doi.org/10.18632/oncotarget.17260

67. Xu Y, Ji Y, Lan X, et al. miR203 contributes to IL17induced VEGF secretion by targeting SOCS3 in keratinocytes. Mol Med Rep. 2017; 16 (6): 8989–8996. https://doi.org/10.3892/mmr.2017.7759

68. Fearon U., Reece R., Smith J. et al. Synovial cytokine and growth factor regulation of MMPs/TIMPs: implications for erosions and angiogenesis in early rheumatoid and psoriatic arthritis patients. Annals of the New York Academy of Sciences. 1999; Vol. 878, pp. 619–621. https://doi.org/10.1111/j.1749–6632.1999.tb07743.x

69. Yamamoto T. Angiogenic and inflammatory properties of psoriatic arthritis. ISRN Dermatol. 2013; 2013: 630620. https://doi.org/10.1155/2013/630620

70. Ballara S., Taylor P. C., Reusch P., et al. Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum. 2001; 44 (9): 2055–2064. https://doi.org/10.1002/1529–0131(200109)44:9<2055:: AID-ART355>3.0.CO;2–2

71. Ballara S.C., Miotla J.M., Paleolog E.M. New vessels, new approaches: angiogenesis as a therapeutic target in musculoskeletal disorders. Int J Exp Pathol. 1999; 80 (5): 235–250. https://doi.org/10.1046/j.1365–2613.1999.00129.x

72. Przepiera-Będzak H., Fischer K., Brzosko M. Serum levels of angiogenic cytokines in psoriatic arthritis and SAPHO syndrome. Pol Arch Med Wewn. 2013; 123 (6): 297–302. https://doi.org/10.20452/pamw.1772

73. Barile S., Medda E., Nisticò L., et al. Vascular endothelial growth factor gene polymorphisms increase the risk to develop psoriasis. Exp Dermatol. 2006; 15 (5): 368–376. https://doi.org/10.1111/j.0906–6705.2006.00416.x

74. Butt C., Lim S., Greenwood C., Rahman P. VEGF, FGF1, FGF2 and EGF gene polymorphisms and psoriatic arthritis. BMC Musculoskelet Disord. 2007; 8: 1. https://doi.org/10.1186/1471–2474–8–1

75. Han S.W., Kim G.W., Seo J.S. et al. VEGF gene polymorphisms and susceptibility to rheumatoid arthritis. Rheumatology. 2004; Vol. 43, No. 9, pp. 1173–1177. https://doi.

76. org/10.1093/rheumatology/keh281

77. Veale D.J., Ritchlin C., FitzGerald O. Immunopathology of psoriasis and psoriatic arthritis. Ann Rheum Dis. 2005; 64 Suppl 2 (Suppl 2): ii26–ii29. https://doi.org/10.1136/ard.2004.031740

78. Akman A., Yilmaz E., Mutlu H., et al. Complete remission of psoriasis following bevacizumab therapy for colon cancer. Clin Exp Dermatol. 2009; 34 (5): e202–e204. https://doi.org/10.1111/j.1365–2230.2008.02991.x

79. Datta-Mitra A., Riar N.K., Raychaudhuri S.P. Remission of psoriasis and psoriatic arthritis during bevacizumab therapy for renal cell cancer. Indian J Dermatol. 2014 Nov; 59 (6): 632. https://doi.org/10.4103/0019–5154.143574

80. Belasco J., Wei N. Psoriatic Arthritis: What is Happening at the Joint? Rheumatol Ther. 2019; 6 (3): 305–315. https://doi.org/10.1007/s40744–019–0159–1

81. Cantatore F. P., Maruotti N., Corrado A., Ribatti D. Anti-angiogenic effects of biotechnological therapies in rheumatic diseases. Biologics. 2017; 11: 123–128. https://doi.org/10.2147/BTT.S143674


Для цитирования:


Притуло О.А., Петров А.А. Патологический ангиогенез при псориазе и псориатическом артрите: патогенетическое значение и терапевтические перспективы. Медицинский алфавит. 2021;(33):58-63. https://doi.org/10.33667/2078-5631-2021-33-58-63

For citation:


Pritulo O.A., Petrov A.A. Psoriasis and pathological angiogenesis: pathogenetic signifcance and therapeutic perspectives. Medical alphabet. 2021;(33):58-63. (In Russ.) https://doi.org/10.33667/2078-5631-2021-33-58-63

Просмотров: 33


ISSN 2078-5631 (Print)