Preview

Медицинский алфавит

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Влияние витаминно-минеральных комплексов на состав грудного молока

https://doi.org/10.33667/2078-5631-2021-11-40-49

Полный текст:

Аннотация

Рациональное вскармливание является одним из важнейших условий, обеспечивающих адекватное созревание различных органов и тканей, оптимальные параметры физического, психомоторного, интеллектуального развития, устойчивость младенца к действию инфекций и других неблагоприятных внешних факторов. Идеальной пищей для младенца является грудное молоко матери, так как оно имеет родственную связь с тканями ребенка и является «золотым стандартом» оптимального питания. Характер вскармливания на первом году жизни в большой мере определяет состояние здоровья ребенка не только в младенчестве, но и в последующие годы его жизни. Недостаточное или неправильное питание матери во время беременности и лактации является следствием продуцирования молока с пониженным содержанием витаминов и эссенциальных пищевых веществ, что может являться одной из причин развития алиментарно‑зависимых состояний у детей раннего возраста, отрицательно сказаться на показателях роста, нервно‑психического развития ребенка. Лучшим способом восполнения дефицита микронутриентов в рационе питания кормящих матерей является прием биологически активных добавок к пище в виде витаминно‑минеральных комплексов (ВМК).

Об авторах

С. В. Орлова
Кафедра диетологии и клинической нутрициологии факультета непрерывного медицинского образования медицинского института ФГАОУ ВО «Российский университет дружбы народов»
Россия

Орлова Светлана Владимировна, д.м.н., проф, зав. кафедрой

Москва



Е. А. Никитина
Кафедра диетологии и клинической нутрициологии факультета непрерывного медицинского образования медицинского института ФГАОУ ВО «Российский университет дружбы народов»
Россия

Никитина Елена Александровна, к.м.н., доцент кафедры

Москва



Е. В. Прокопенко
ООО «МС Груп»
Россия

Прокопенко Елена Валерьевна, врач‑эндокринолог, диетолог, врач‑методолог медицинского департамента  

Москва



А. Н. Водолазская
ООО «Эль-Клиник»
Россия

Водолазкая Ангелина Николаевна, врач – диетолог‑эндокринолог медицинского центра

Москва



Список литературы

1. Alberti-Fidanza A, Burini G, Perriello G. Total antioxidant capacity of colostrum, and transitional and mature human milk. J Matern Fetal Neonatal Med 2002; 11: 275–9.

2. Allen L.H. Multiple micronutrients in pregnancy and lactation: an overview. Am J Clin Nutr, 81 (2005), pp. 1206S-1212S

3. Allen LH. B Vitamins in Breast Milk: Relative Importance of Maternal Status and Intake, and Effects on Infant Status and function. Advances in Nutrition, Volume 3, Issue 3, May 2012, Pages 362–369.

4. Amaral YN, Marano D, Silva LM, Guimaraes AC, Moreira ME. Are There Changes in the Fatty Acid Profile of Breast Milk with Supplementation of Omega-3 Sources? A Systematic Review. Rev Bras Ginecol Obstet. 2017; 39 (3): 128–141.

5. Ansótegui J. Arena, Segura S. Ares. Déficit de yodo en España: ingesta circunstancialmente suficiente pero sin una estrategia explícita de salud pública que garantice su sostenibilidad. An Pediatr (Barc), 72 (2010), pp. 297–301.

6. Antonakou A, Chiou A, Andrikopoulos NK, Bakoula C, Matalas AL. Breast milk tocopherol content during the first six months in exclusively breastfeeding Greek women. Eur J Nutr 2011; 50: 195–202.

7. Antonakou, K.P. Skenderi, A. Chiou, C.A. Anastasiou, C. Bakoula, A.L. Matalas.Breast milk fat concentration and fatty acid pattern during the first six months in exclusively breastfeeding Greek women.Eur J Nutr, 52 (2013), pp. 963–973.

8. Ares Segura S, Arena Ansótegui J, Marta Díaz-Gómez N, en representación del Comité de Lactancia Materna de la Asociación Española de Pediatría. La importancia de la nutrición materna durante la lactancia, ¿necesitan las madres lactantes suplementos nutricionales? (Barc). 2016; 84: 347.

9. Becker DV, Braverman LE, Delange F, et al. Iodine supplementation for pregnancy and lactation – United States and Canada: recommendations of the American Thyroid Association. Thyroid 2006; 16: 949–51.

10. Berenhauser AC, Pinheiro do Prado AC, da Silva RC, Gioielli LA, Block JM. Fatty acid composition in preterm and term breast milk. Int J Food Sci Nutr. (2012) 63: 318–25.

11. Bernadeta, P.G.; Zalewski, B.M.; Polaczek, A.; Szajewska, H. Duration of Breastfeeding and Early Growth: A Systematic Review of Current Evidence. Breastfeed. Med. 2019, 14, 218–229.

12. Betelihem Terefe, Asaye Birhanu, Paulos Nigussie, Aster Tsegaye, Effect of Maternal Iron Deficiency Anemia on the Iron Store of Newborns in Ethiopia, Anemia, 10.1155/2015/808204, 2015, (1–6) (2015).

13. Bo LG, Lin Q, Ping O, Xian XR. Analysis on dietary survey and influencing factors of wet nurses during puerperal period. Chinese J Matern Child Health. 2015; 30 (18): 3029–31.

14. Boix-Amoros A, Collado MC, Van’t Land B, Calvert A, Le Doare K, Garssen J, et al. Reviewing the evidence on breast milk composition and immunological outcomes. Nutr Rev. 2019; 77 (8): 541–56.

15. Bouhouch RR, Bouhouch S, Cherkaoui M, Aboussad A, Stinca S, Haldimann M, et al. Direct iodine supplementation of infants versus supplementation of their breastfeeding mothers: a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. (2014) 2: 197–209.

16. Boyce C, Watson M, Lazidis G, Reeve S, Dods K, Simmer K, et al. Preterm human milk composition: a systematic literature review. Br J Nutr. (2016) 116: 1033–45.

17. Bravi F, Wiens F, Decarli A, Dal Pont A, Agostoni C, Ferraroni M. Impact of maternal nutrition on breast-milk composition: a systematic review. Am J Clin Nutr. 2016; 104 (3): 646–62.

18. Breymann C., Metabolic implications of iron in breast milk, Handbook of dietary and nutritional aspects of human breast milk, 10.3920/978–90–8686–764–6_19, (361–370), (2013).

19. Bruun, S.; Jacobsen, L.N.; Ze, X.; Husby, S.; Ueno, H.M.; Nojiri, K.; Kobayashi, S.; Kwon, J.; Liu, X.; Yan, S.; et al. Osteopontin levels in human milk vary across countries and within lactation period: Data from a multicenter study. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 250–256.

20. Buss IH, McGill F, Darlow BA, Winterbourn CC. Vitamin C is reduced in human milk after storage. Acta Paediatr. (2001) 90: 813–5.

21. Butte, N.; Lopez-Alaracon, M.; Garza, C. Nutrient Adequacy of Exclusive Breastfeeding for the Term Infant during the First Six Months of Life; World Health Organization: Geneva, Switzerland, 2002.

22. Butts CA, Hedderley DI, Herath TD, Paturi G, Glyn-Jones S, Wiens F, et al. Human milk composition and dietary intakes of breastfeeding women of different ethnicity from the Manawatu-Wanganui region of New Zealand. Nutrients. (2018) 10: 1231.

23. Bzikowska A., Czerwonogrodzka-Senczyna A., Wesołowska A., Weker H. Nutrition during breastfeeding – impact on human milk composition. Pol Merkur Lekarski 2017 22; 43 (258): 276–280.

24. Cao MH, An Q, Li Y, Yao DL. Analysis of the detection results of 4317 cases of breast milk composition in Weinan city. Chinese J Child Health Care. 2016; 24 (7): 739–41.

25. Carlson S.E. Docosahexaenoic acid supplementation in pregnancy and lactation. Am J Clin Nutr., 89 (2009), pp. 678S-684S.

26. Chang SJ, Kirksey Vitamin B6 status of breast-fed infants in relation to pyridoxine HCl supplementation of mothers. Journal of Nutritional Science & Vitaminology. 48 (1): 10–7, 2002.

27. Chapman D.J., Nommsen-Rivers L. Impact of maternal nutritional status on human milk quality and infant outcomes: an update on key nutrients. Adv Nutr, 3 (2012), pp. 351–352.

28. Choi YK, Kim JM, Lee JE, Cho MS, Kang BS, Choi H, et al. Association of maternal diet with zinc, copper, and iron concentrations in transitional human milk produced by Korean mothers. Clin Nutr Res. 2016; 5 (1): 15–25.

29. Choi, H.J.; Kang, S.K.; Chung, M.R. The relationship between exclusive breastfeeding and infant development: A 6- and 12-month follow-up study. Early Hum. Dev. 2018, 127, 42–47.

30. Cisse AS, Dossou N, Ndiaye M, Gueye AL, Diop el HI, Diaham B, et al. Stable isotope aided evaluation of community nutrition program: effect of food supplementation schemes on maternal and infant nutritional status. Food Nutr Bull. (2002) 23 (3 Suppl): 169–73.

31. Citrakesumasari, Vonny kalsum, Chaidir Masyhuri Majiding, Tenri Andi Ayu Rahman, Yessy Kurniati, Mineral Concentrations in Breast Milk across Infant Birth Weight, Pakistan Journal of Nutrition, 10.3923/pjn.2020.32.37, 19, 1, (32–37), (2019).

32. Clemente HA, Ramalho HM, Lima MS, Grilo EC, et al. Maternal supplementation with natural or synthetic vitamin E and its levels in human colostrum. J Pediatr Gastroenterol Nutr. (2015) 60: 533–7.

33. Comprehensive literature search and review of breast milk composition as preparatory work for the setting of dietary reference values for vitamins and minerals, EFSA Supporting Publications, 10.2903/sp.efsa.2014.EN-629, 11, 7, (2014).

34. Czosnykowska-Lukacka M, Krolak-Olejnik B, Orczyk-Pawilowicz M. Breast milk macronutrient components in prolonged lactation. Nutrients. (2018) 10: 1893.

35. Daphna K Dror, Lindsay H Allen, Overview of Nutrients in Human Milk, Advances in Nutrition, 10.1093/advances /nmy022, 9, suppl_1, (278S-294S), (2018).

36. Davenport C, Yan J, Taesuwan S, Shields K, West AA, Jiang X, Perry CA, Malysheva OV, Stabler SP, Allen RH, Caudill MA. Choline intakes exceeding recommendations during human lactation improve breast milk choline content by increasing PEMT pathway metabolites. J Nutr Biochem. 2015 Sep; 26 (9): 903–11.

37. Dawodu A, Tsang RC. Maternal vitamin D status: effect on milk vitamin D content and vitamin D status of breastfeeding infants. Adv Nutr. (2012) 3: 353–61.

38. Dawodu A, Zalla L., Woo J.G., Herbers P.M., Davidson B.S., Heubi J.E., et al. Heightened attention to supplementation is needed to improve the vitamin D status of breastfeeding mothers and infants when sunshine exposure is restricted. Matern Child Nutr, 10 (2014), pp. 383–397.

39. de Figueiredo CS, Palhares DB, Melnikov P, Moura AJ, dos Santos SC. Zinc and copper concentrations in human preterm milk. Biol Trace Elem Res. (2010) 136: 1–7.

40. Deegan KL, Jones KM, Zuleta C, Ramirez-Zea M, Lildballe DL, Nexo E, et al. Breast milk vitamin B-12 concentrations in Guatemalan women are correlated with maternal but not infant vitamin B-12 status at 12 months postpartum. J Nutr. 2012; 142 (1): 112–6.

41. Deminice TMM, Ferraz IS, Monteiro JP, Jordao AA, Ambrosio L, Nogueira-de-Almeida CA. Vitamin A intake of Brazilian mothers and retinol concentrations in maternal blood, human milk, and the umbilical cord. J Int Med Res. (2018) 46: 1555–69.

42. Domellof M, Lonnerdal B, Dewey KG, Cohen RJ, Hernell O. Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status. Am J Clin Nutr. (2004) 79: 111–5.

43. Domínguez-González M. Raquel, Pilar Bermejo-Barrera, Human milk, Handbook of Mineral Elements in Food, 10.1002/9781118654316, (725–747), (2015).

44. Dorea JG. Selenium and breast-feeding. Br J Nutr 2002; 88: 443–61.

45. Dror DK, Allen LH. Iodine in human milk: a systematic review. Adv Nutr. (2018) 9: 347S-57S.

46. Dror DK, Allen LH. Overview of nutrients in human milk. Adv Nutr. (2018) 9: 278S-94S.

47. Duggan C, Srinivasan K, Thomas T, Samuel T, Rajendran R, Muthayya S, Finkelstein JL, Lukose A, Fawzi W, Allen LH, Bosch RJ, Kurpad AV. Vitamin B-12 supplementation during pregnancy and early lactation increases maternal, breast milk, and infant measures of vitamin B-12 status. J Nutr. 2014; 144 (5): 758–64.

48. Dylewski ML, Picciano MF. Milk selenium content is enhanced by modest selenium supplementation in extended lactation. J Trace Elem Exp Med. (2002) 15: 191–199.

49. El-Farrash RA, Ismail EA, Nada AS. Cord blood iron profile and breast milk micronutrients in maternal iron deficiency anemia. Pediatr Blood Cancer. (2012) 58: 233–8.

50. Fidler N, Salobir K, Stibilj V. Fatty acid composition of human milk in different regions of Slovenia. Ann Nutr Metab. (2000) 44: 187–93.

51. Fischer Leslie M, Kerry-Ann da Costa, Lester Kwock, Joseph Galanko, Steven H Zeisel Dietary choline requirements of women: effects of estrogen and genetic variation Am J Clin Nutr. (2010) 92: 336–46.

52. Garcia AH, Voortman T, Baena CP, Chowdhurry R, et al. Maternal weight status, diet, and supplement use as determinants of breastfeeding and complementary feeding: A systematic review and meta-analysis. Nutr Rev Nutrition & Dietetics, (2015) 2016; 74 (8): 490–516.

53. Gidrewicz Dominica A, Fenton Tanis R. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk BMC Pediatrr. (2014) 14: 216.

54. Granot E, Ishay-Gigi K, Malaach L, Flidel-Rimon O. Is there a difference in breast milk fatty acid composition of mothers of preterm and term infants? J Matern Fetal Neonatal Med. (2016) 29: 832–5.

55. Greibe E, Lildballe DL, Streym S, Vestergaard P, Rejnmark L, Mosekilde L, et al. Cobalamin and haptocorrin in human milk and cobalamin-related variables in mother and child: a 9-mo longitudinal study. Am J Clin Nutr. (2013) 98: 389–95.

56. Hal V., N. Lowe, N. Crossland, C. Berti, I. Cetin, M. Hermoso, et al. Nutritional requirements during lactation. Towards European alignment reference values: the EURRECA network. Matern Child Nutr, 6 (2010), pp. 39–54.

57. Hellmuth C, Uhl O, Demmelmair H, Grunewald M, Auricchio R, Castillejo G и др. The impact of human breast milk components on the infant metabolism. PLoS ONE. (2018) 13: e0197713.

58. Hermoso M., C. Vollhardt, K. Bergmann, B. Koletzko. Critical micronutrients in pregnancy, lactation, and infancy: considerations on vitamin D, folic acid, and iron, and priorities for future research. Ann Nutr Metab, 59 (2011), pp. 5–9.

59. Hollis, B.W.; Wagner, C.L.; Howard, C.R.; et al. Maternal versus infant Vitamin D supplementation during lactation: A randomized controlled trial. Pediatrics 2015, 136, 625–634.

60. Huang LL, Xiong F, Yang F. Relationship between breast milk composition and weight growth velocity of infants fed with exclusive breast milk. Chinese J Contemp Pediatr. 2016; 18 (10): 943–6.

61. Huynh DTT, Tran NT, Nguyen LT, Berde Y, Low YL. Impact of maternal nutritional supplementation in conjunction with a breastfeeding support program on breastfeeding performance, birth, and growth outcomes in a Vietnamese population. J Matern Fetal Neonatal Med. (2018) 31: 1586–94.

62. Innis SM. Impact of maternal diet on human milk composition and neurological development of infants. Am J Clin Nutr 2014; 99: 734S-41S.

63. Iodine supplementation during pregnancy and lactation. Position statement of the Working Group on Disorders Related to Iodine Deficiency and Thyroid Dysfunction of the Spanish Society of Endocrinology and Nutrition. Endocrinol Nutr, 61 (2014), pp. 27–34.

64. Iranpour R, Kelishadi R, Babaie S, Khosravi-Darani K, Farajian S. Comparison of long chain polyunsaturated fatty acid content in human milk in preterm and term deliveries and its correlation with mothers’ diet. J Res Med Sci. 2013; 18 (1): 1–5.

65. Jasti S, Siega-Riz AM, Cogswell ME, Hartzema AG, Bentley ME. Pill count adherence to prenatal multivitamin/mineral supplement use among low-income women. J Nutr 2005; 135: 1093–101.

66. Jensen C.L., Voigt R.G., Liorente A.M., Peters S.U., Prager T.C., Zou Y.L., et al. Effects of early maternal docosahexaenoic acid intake on neuropsychological status and visual acuity at five years of age of breast-fed term infants. J. Pediatr, 157 (2010), pp. 900–905.

67. Jie L, Qi C, Sun J, Yu R, Wang X, Korma SA, et al. The impact of lactation and gestational age on the composition of branched-chain fatty acids in human breast milk. Food Funct. (2018) 9: 1747–54.

68. Kaneko, A.; Kaneita, Y.; Yokoyama, et al. Factors Associated with Exclusive Breast-feeding in Japan: For Activities to Support Child-rearing with Breast-feeding. J. Epidemiol. 2006, 16, 57–63.

69. Keikha M, Bahreynian M, Saleki M, Kelishadi R. Macro- and micronutrients of human milk composition: are they related to maternal diet? A comprehensive systematic review. Breastfeed Med. 2017; 12 (9): 517–27.

70. Keisuke Nojiri, Shunjiro Kobayashi, Satoshi Higurashi, et al. Maternal Health and Nutrition Status, Human Milk Composition, and Growth and Development of Infants and Children: A Prospective Japanese Human Milk Study. Protocol Int. J. Environ. Res. Public Health 2020, 17, 1869.

71. Ketha H, Thacher TD, Oberhelman SS, Fischer PR, Singh RJ, Kumar R. Comparison of the effect of daily versus bolus dose maternal vitamin D3 supplementation on the 24,25-dihydroxyvitamin D3 to 25-hydroxyvitamin D3 ratio. Bone. (2018) 110: 321–5.

72. Kim H, Kang S, Jung BM, Yi H, Jung JA, Chang N. Breast milk fatty acid composition and fatty acid intake of lactating mothers in South Korea. Br J Nutr. 2017; 117 (4): 556–61.

73. Kim H, Yi H, Jung JA, Chang N. Association between lutein intake and lutein concentrations in human milk samples from lactating mothers in South Korea. Eur J Nutr. (2018) 57: 417–21.

74. Kodentsova V.M., Vrzhesinskaya O.A. Evaluation of the vitamin status in nursing women by vitamin content in breast milk. Bull Exp Biol Med 2006; 141: 323–7.

75. Kodentsova V.M., Vrzhesinskaya O.A. Scientifically grounded approaches to the selection and dosage of vitamin and mineral complexes. Traditional medicine.– 2011; 5: 351–7.

76. Kodentsova V.M., Gmoshinskaya O.A. Vitamin profile of breast milk and its optimization. Doctor, 1–2015.

77. Koletzko B, Godfrey KM, Poston L, Szajewska H, van Goudoever JB, de Waard M, et al. Nutrition during pregnancy, lactation and early childhood and itsimplications for maternal and long-term child health: the early nutrition project recommendations. Ann Nutr Metab. 2019; 74 (2): 93–106.

78. Kovacs C.S. Vitamin D in pregnancy and lactation: maternal, fetal, and neonatal outcomes from human and animal studies. Am J Clin Nutr, 88 (2008), pp. 520S-528S.

79. Kreissl A, Zwiauer V, Repa A, Binder C, Thanhaeuser M, Jilma B, et al. Human milk analyser shows that the lactation period affects protein levels in preterm breastmilk. Acta Paediatr. 2016; 105 (6): 635–40.

80. Lamers Y. Folate recommendations for pregnancy, lactation, and infancy. Ann Nutr Metab, 59 (2011), pp. 32–37.

81. Lee MK, Binns C. Breastfeeding and the risk of infant illness in Asia: a review. Int J Environ Res Public Health. 2019; 17(1): 186.

82. Lee S, Kim S, Park J. et al. Perfluoroalkyl substances (PFASs) in breast milk from Korea: time- course trends, influencing factors, infant exposure. Sci Total Environ. (2018) 612: 286–92.

83. Leotsinidis M, Alexopoulos A, Kostopoulou-Farri E. Toxic and essential trace elements in human milk from Greek lactating women: association with dietary habits and other factors. Chemosphere 2005; 61: 238–47.

84. Lima MS, Dimenstein R, Ribeiro KD. Vitamin E concentration in human milk and associated factors: a literature review. J Pediatr (Rio J) 2014; 90: 440–8.

85. Lind MV, Larnkjaer A, Molgaard C, Michaelsen KF. Breastfeeding, breast milk composition, and growth outcomes. Nestle Nutr Inst Workshop Ser. (2018) 89: 63–77.

86. Lipkie TE, Morrow AL, Jouni ZE, McMahon RJ, Ferruzzi MG. Longitudinal survey of carotenoids in human milk from urban cohorts in China, Mexico, the USA. PLoS ONE. (2015) 10: e0127729.

87. Liu Y, Liu X, Wang L. The investigation of fatty acid composition of breast milk and its relationship with dietary fatty acid intake in 5 regions of China. Medicine (Baltimore). 2019; 98 (24): e15855.

88. Lozano B, Castellote AI, Montes R, Lopez-Sabater MC. Vitamins, fatty acids, and antioxidant capacity stability during storage of freeze-dried human milk. Int J Food Sci Nutr. (2014) 65: 703–7.

89. Maru M, Birhanu T, Tessema DA. Calcium, magnesium, iron, zinc and copper, compositions of human milk from populations with cereal and ‘enset’ based diets. Ethiop J Health Sci. 2013; 23 (2): 90–7.

90. McCauley, M.; Broek, N.V.D.; Dou, L.; Othman, M. Vitamin A supplementation during pregnancy for maternal and newborn outcomes. Cochrane Database Syst. Rev. 2015, 10, CD008666.

91. McCarthy E. K., Kiely M.E., The neonatal period: A missed opportunity for the prevention of iron deficiency and its associated neurological consequences? Nutrition Bulletin, 10.1111/nbu.12407, 44, 4, (309–319), (2019).

92. Mello-Neto J., P. H.C. Rondo, M. Oshiiwa, M.A. Morgano, C.Z. Zacari, M. L. d. Santos, Iron Supplementation in Pregnancy and Breastfeeding and Iron, Copper and Zinc Status of Lactating Women From a Human Milk Bank, Journal of Tropical Pediatrics, 10.1093/tropej/fms055, 59, 2, (140–144), (2012).

93. Menjo, A.; Mizuno, K.; Murase, M.; Nishida, Y.; Taki, M.; Itabashi, K.; Shimono, T.; Namba, K. Bedside analysis of human milk for adjustable nutrition strategy. Acta Paediatr. Int. J. Paediatr. 2009, 98, 380–384.

94. Mohammad MA, Sunehag AL, Haymond MW «Effect of dietary macronutrient composition under moderate hypocaloric intake on maternal adaptation during lactation.» Am.J. Clin. Nutr., 2009 June; 89 (6): 1821–7.

95. Moran V.H., A.L. Skinner, M.W. Medina, S. Patel, F. Dykes, O.W. Souverein, et al. The relationship between zinc intake and serum/plasma zinc concentration in pregnant and lactating women: a systematic review with dose–response meta-analyses. J Trace Elem Med Biol, 26 (2012), pp. 74–79.

96. Mulrine HM, Skeaff SA, Ferguson EL, Gray AR, Valeix P. Breast-milk iodine concentration declines over the first 6 mo postpartum in iodine-deficient women. Am J Clin Nutr. (2010) 92: 849–56.

97. Nazeri P, Mirmiran P, Tahmasebinejad Z, Hedayati M, Delshad H, Azizi F. The effects of iodine fortified milk on the iodine status of lactating mothers and infants in an area with a successful salt iodization program: a randomized controlled trial. Nutrients. (2017) 9: 180.

98. Newton S, Cousens S, Owusu-Agyei S et al. Vitamin A supplementation does not affect infants’ immune responses to polio and tetanus vaccines. J Nutr. 2005; 135: 2669–73.

99. Nikniaz L Jr, Mahdavi R, Arefhoesseini SR, Sowti Khiabani M. Association between fat content of breast milk and maternal nutritional status and infants’ weight in Tabriz, Iran. Malays J Nutr. (2009) 15: 37–44.

100. Nikniaz L, Mahdavi R, Ostadrahimi A, Nikniaz Z, Aliasgharzadeh S. Does maternal synbiotic supplementation affect conjugated linoleic acid level in breast milk? A randomized placebo-controlled clinical trial. Breastfeed Med. (2018) 13: 81–4.

101. Nishimura RY, Barbieiri P, Castro GS, Jordao AA Jr, Perdona Gda S, Sartorelli DS. Dietary polyunsaturated fatty acid intake during late pregnancy affects fatty acid composition of mature breast milk. Nutrition 2014; 30: 685–9.

102. O’Brien CE, Krebs NF, Westcott JL, Dong F. Relationships among plasma zinc, plasma prolactin, milk transfer, and milk zinc in lactating women. J Hum Lact. (2007) 23: 179–83.

103. Olafsdottir AS, Thorsdottir I, Wagner KH, Elmadfa I. Polyunsaturated fatty acids in the diet and breast milk of lactating Icelandic women with traditional fish and cod liver oil consumption. Ann Nutr Metab 2006; 50: 270–6.

104. Olang B, Hajifaraji M, Atiya Ali M, Hellstrand S, Palesh M, Azadnyia E, Kamali Z, Strandvik B, Yngve A. Docosahexaenoic acid in breast milk reflects maternal fish intake in Iranian mothers. Food Nutr Sci 2012; 3: 441–6.

105. Olausson H, Goldberg GR, Laskey MA, Schoenmakers I, Jarjou LM, Prentice A. Calcium economy in human pregnancy and lactation. Nutr Res Rev. 2012 Jun; 25 (1): 40–67.

106. Oliveira JM, Allert R, East CE. Vitamin A supplementation for postpartum women. Cochrane Database Syst Rev. 2016; 3: CD005944.

107. Omolara B. Sanni, Thane Chambers, Jia Hang Li, et al. A systematic review and meta-analysis of the correlation between maternal and neonatal iron status and haematologic indices, Eclinical Medicine, 10.1016/j.eclinm.2020.100555, 27, (100555), (2020).

108. Ozarda Y, Cansev M, Ulus IH. Breast milk choline contents are associated with inflammatory status of breastfeeding women. J Hum Lact. (2014) 30: 161–6.

109. Pawlak, R.; Vos, P.; Shahab-Ferdows, S.; Hampel, D.; Allen, L.H.; Perrin, M.T. Vitamin B-12 content in breast milk of vegan, vegetarian, and nonvegetarian lactating women in the United States. Am.J. Clin. Nutr. 2018,108, 525–531.

110. Penacoba C, Catala P. Associations between breastfeeding and mother-infant relationships: a systematic review. Breastfeed Med. 2019; 14 (9): 616–29.

111. Perry CA, West AA, Gayle A, Lucas LK, Yan J, Jiang X, et al. Pregnancy and lactation alter biomarkers of biotin metabolism in women consuming a controlled diet. J Nutr. (2014) 144: 1977–84.

112. Petry, N.; Olofin, I.; Boy, E.; Angel, M.D.; Rohner, F. The effect of low dose Iron and zinc intake on child micronutrient status and development during the first 1000 days of life: A systematic review and meta-analysis. Nutrients 2016, 8, 773.

113. Picciano M.F., M.K. McGuire. Use of dietary supplements by pregnant and lactating women in North America. Am J Clin Nutr, 89 (2009), pp. 663S-667S.

114. Picciano MF. Pregnancy and lactation: physiological adjustments, nutritional requirements and the role of dietary supplements. J Nutr 2003; 133 (suppl): 1997S-2002S.

115. Quinn EA, Largado F, Power M, Kuzawa CW. Predictors of breast milk macronutrient composition in Filipino mothers. Am J Hum Biol 2012; 24: 533–40.

116. Ramsay DT, Hartmann PE. Milk removal from the breast. Breastfeed Rev. (2005) 13: 5–7.

117. Rincón D., A. Foguet, M. Rojas, E. Segarra, E. Sacristán, R. Teixidor, A. Ortega, Tiempo de pinzamiento del cordón umbilical y complicaciones neonatales, un estudio prospectivo, Anales de Pediatría, 10.1016/j.anpedi.2013.10.051, 81, 3, (142–148), (2014).

118. Rist L, Mueller A, Barthel C, Snijders B, Jansen M, Simoes-Wust AP, Huber M, Kummeling I, von Mandach U, Steinhart H, et al. Influence of organic diet on the amount of conjugated linoleic acids in breast milk of lactating women in The Netherlands. Br J Nutr 2007; 97: 735–43.

119. Saarela T, Kokkonen J, Koivisto M. Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr. (2005) 94: 1176–81.

120. Samuel Tinu Mary, Qianling Zhou, et al. Nutritional and Non-nutritional Composition of Human Milk Is Modulated by Maternal, Infant, and Methodological Factors, Frontiers in Nutrition, 10.3389/fnut.2020.576133, 7, (2020).

121. Sherry CL, Oliver JS, Marriage BJ. Docosahexaenoic acid supplementation in lactating women increases breast milk and plasma docosahexaenoic acid concentrations and alters infant omega 6:3 fatty acid ratio. Prostaglandins Leukot Essent Fatty Acids 95: 63–69, 2015.

122. Sherry CL, Oliver JS, Renzi LM, Marriage BJ. Lutein supplementation increases breast milk and plasma lutein concentrations in lactating women and infant plasma concentrations but does not affect other carotenoids. J Nutr 144 (8): 1256–1263, 2014.

123. Siddiqua Towfida J., Shaikh M. Ahmad, Khalid B. Ahsan, Mamunur Rashid, Anjan Roy, Syed M. Rahman et al. Vitamin B12 supplementation during pregnancy and postpartum improves B12 status of both mothers and infants but vaccine response in mothers only: a randomized clinical trial in Bangladesh Eur J Nutr. (2016) 55: 281–93.

124. Silvestre MD, Lagarda MJ, Farre R, Martinez-Costa C, Brines J, Molina A, et al. A study of factors that may influence the determination of copper, iron, and zinc in human milk during sampling and in sample individuals. Biol Trace Elem Res. (2000) 76: 217–27.

125. Sukkhojaiwaratkul D, Mahachoklertwattana P, Poomthavorn P, Panburana P, Chailurkit LO, Khlairit P, et al. Effects of maternal iodine supplementation during pregnancy and lactation on iodine status and neonatal thyroid-stimulating hormone. J Perinatol. (2014)

126. Sun Y, Han YB, Jiang HY, He HY. Analysis of breast milk composition. Matern Child Health Care China. 2018; 33 (11): 2637–9.

127. Szlagatys-Sidorkiewicz A, Zagierski M, Jankowska A, Luczak G, Macur K, Baczek T, et al. Longitudinal study of vitamins A, E and lipid oxidative damage in human milk throughout lactation. Early Hum Dev. (2012) 88: 421–4.

128. Tawia S. Iron and exclusive breastfeeding. Breastfeed Rev, 20 (2012), pp. 35–47.

129. Thiele DK, Senti JL, Anderson CM. Maternal vitamin D supplementation to meet the needs of the breastfed infant: a systematic review. J Hum Lact. (2013) 29: 163–70.

130. Tian HM, Wu YX, Lin YQ, Chen XY, Yu M, Tong L, et al. Dietary patterns affect maternal macronutrient intake levels and the fatty acid profile of breast milk in lactating Chinese mothers. Nutrition. 2019; 58: 83–8.

131. Turfkruyer M, Verhasselt V. Breast milk and its impact on maturation of the neonatal immune system. Curr Opin Infect Dis. (2015) 28: 199–206.

132. Valent F, Horvat M, Mazej D, Stibilj V, Barbone F. Maternal diet and selenium concentration in human milk from an Italian population. J Epidemiol. 2011; 21 (4): 285–92.

133. Valentine C.J., Wagner C.L. Nutritional management of the breastfeeding dyad. Pediatr Clin North Am, 60 (2013), pp. 261–274.

134. Victora, C.G.; Bahl, R.; Barros, A.J.D.; França, G.V.A.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C.; et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490.

135. Wang BZ, Sun YJ, Zhang H. Analysis of breast milk composition and it’s impactors. Ningxia Med J. 2016; 38 (8): 758–60.

136. WHO. Global Burden of Disease regions used for WHO/CHOICE analyses [cited 2015 Jul 22]. Available from: http://www.who.int/choice/demography/regions/en/

137. Wu YP, Guo CQ, Chu YJ, Liu XZ. Cohort study on the effect of breast milk composition on early growth and development velocity of infants fed with exclusive breastfeeding. Matern Child Health Care China. 2014; 29 (22): 3600–2.

138. Xiang M, Harbige L, Zetterström R. Long-chain polyunsaturated fatty acids in Chinese and Swedish mothers: diet, breast milk and infant growth. Acta Paediatr. (2005) 94: 1543–9.

139. Xue Y, Campos-Gimenez E, Redeuil KM, Leveques A, Actis-Goretta L, Vinyes-Pares G, et al. Concentrations of carotenoids and tocopherols in breast milk from urban chinese mothers and their associations with maternal characteristics: a cross-sectional study. Nutrients. (2017) 9: 1229.

140. Yang T, Zhang L, Bao W, Rong S. Nutritional composition of breast milk in Chinese women: a systematic review. Asia Pac J Clin Nutr. (2018) 27: 491–502.

141. Yang T, Zhang Y, Ning Y, You L, Ma D, Zheng Y, et al. Breast milk macronutrient composition and the associated factors in urban Chinese mothers. Chin Med J. 2014; 127 (9): 1721–5.

142. Yaya S, Wang R, Tang S, Ghose B. Intake of supplementary food during pregnancy and lactation and its association with child nutrition in Timor Leste. PeerJ. 2018; 6: e5935.

143. Zeisel S.H. Is maternal diet supplementation beneficial? Optimal development of infant depends on mother’s diet. Am J Clin Nutr, 89 (2009), pp. 685S-687S.

144. Zeisel SH. Is maternal diet supplementation beneficial? Optimal development of infant depends on mother’s diet. Am J Clin Nutr 2009; 89 (suppl): 685S-7S.

145. Zhao A, Ning YB, Zhang YM, Yang XG, et al. Mineral compositions in breast milk of healthy chinese lactating women in urban areas and its associated factors. Chin Med J. (2014) 127: 2643–8.


Для цитирования:


Орлова С.В., Никитина Е.А., Прокопенко Е.В., Водолазская А.Н. Влияние витаминно-минеральных комплексов на состав грудного молока. Медицинский алфавит. 2021;1(11):40-49. https://doi.org/10.33667/2078-5631-2021-11-40-49

For citation:


Orlova S.V., Nikitina E.A., Prokopenko E.V., Vodolazskaya A.N. Influence of vitamin and mineral complexes on the composition of breast milk. Medical alphabet. 2021;1(11):40-49. (In Russ.) https://doi.org/10.33667/2078-5631-2021-11-40-49

Просмотров: 40


ISSN 2078-5631 (Print)