Preview

Медицинский алфавит

Расширенный поиск

Механизмы поражения печени при COVID‑19

https://doi.org/10.33667/2078-5631-2020-19-39-46

Аннотация

В конце 2019 года в Китае был обнаружен новый коронавирус (SARS-CoV-2), вызывающий коронавирусную инфекцию COVID-19. Продолжающаяся пандемия COVID-19 представляет собой серьезную проблему для систем здравоохранения во всем мире. Информации о том, как влияет инфекция на функции печени и о значимости ранее существовавшего заболевания печени как фактора риска заражения и тяжелого течения COVID-19, еще мало. Кроме того, некоторые препараты, используемые для лечения новой коронавирусной инфекции, обладают гепатотоксичностью. В настоящей статье мы проводим анализ данных влиянии COVID-19 на функции печени, а также о течении и исходах COVID-19 у пациентов с заболеваниями печени, в том числе с гепатоцеллюлярной карциномой или находящихся на иммуносупрессивной терапии после трансплантации печени.

Об авторах

Т. В. Пинчук
Кафедра факультетской терапии ПФ ФГАОУ ВО «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова» Минздрава России
Россия

к.м.н., доцент кафедры

г. Москва



Н. В. Орлова
Кафедра факультетской терапии ПФ ФГАОУ ВО «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова» Минздрава России
Россия

д.м.н., проф. кафедры

г. Москва



Т. Г. Суранова
Академия постдипломного образования ФГБУ «Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий» ФМБА России
Россия

к.м.н., доцент

г. Москва



Т. И. Бонкало
ГБУ «Научно-исследовательский институт организации здравоохранения и медицинского менеджмента Департамента здравоохранения г. Москвы»
Россия
д.псх.н., доцент


Список литературы

1. Lang PA, Recher M, Honke N, Scheu S, Borkens S, et al. Tissue macrophages suppress viral replication and prevent severe immunopathology in an interferon-I-dependent manner in mice. Hepatology. 2010 Jul; 52 (1): 25–32. DOI: 10.1002/hep.23640.

2. Polakos NK, Cornejo JC, Murray DA, Wright KO, Treanor JJ, Crispe IN, et al. Kupffer cell dependent hepatitis occurs during influenza infection. Am J Pathol. 2006; 168 (4): 1169–78.

3. Hilgenfeld R.; Peiris M. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antivir. Res. 2013, 100, 286–295. DOI: 10.1016/j.antiviral.2013.08.015.

4. Chau TN, Lee KC, Yao H, Tsang TY, Chow TC, et al. SARS-associated viral hepatitis caused by a novel coronavirus: report of three cases. Hepatology. 2004; 39: 302–310. DOI: 10.1002/hep.20111.

5. Bangash M. N.; Patel J.; Parekh D. COVID-19 and the liver: Little cause for concern. Lancet Gastroenterol. Hepatol. 2020, 5, 529–530. DOI: 10.1016/S2468–1253(20)30084–4.

6. Ghayda RA, Lee J, Lee JY, Kim DK, Lee KH, et al. Correlations of Clinical and Laboratory Characteristics of COVID-19: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2020 17 (14): 5026. DOI: 10.3390/ijerph17145026.

7. Zhang C.; Shi L.; Wang F. S. Liver injury in COVID-19: Management and challenges. Lancet Gastroenterol. Hepatol. 2020, 5, 428–430. DOI: 10.1016/S2468–1253(20)30057–1.

8. Cui Y, Tian M, Huang D, Wang X, Huang Y, et al. A 55-Day-Old Female Infant Infected With 2019 Novel Coronavirus Disease: Presenting With Pneumonia, Liver Injury, and Heart Damage. J Infect Dis. 2020 May 11; 221 (11): 1775–1781. DOI: 10.1093/infdis/jiaa113.

9. APASL Covid-19 Task Force, Lau G, Sharma M. Clinical practice guidance for hepatology and liver transplant providers during the COVID-19 pandemic: APASL expert panel consensus recommendations. Hepatol Int. 2020 Jul; 14 (4): 415–428. DOI: 10.1007/s12072–020–10054-w.

10. Shiffman RN, Shekelle P, Overhage JM, Slutsky J, Grimshaw J, et al. Standardized reporting of clinical practice guidelines: a proposal from the Conference on Guideline Standardization. Ann Intern Med. 2003; 139: 493–8. DOI: 10.7326/0003–4819–139–6–200309160–00013.

11. Cai Q, Huang D, Yu H, Zhu Z, Xia Z, et al. COVID-19: Abnormal liver function tests J Hepatol. 2020. Sep; 73 (3): 566–574. doi.org/10.1016/j.jhep.2020.04.006.

12. Chai X, Hu L, Zhang Y, Han W, Lu Z, et al. Specific ACE 2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv. 2020. https://doi.org/10.1101/2020.02.03.931766

13. Zhao B, Ni C, Gao R, Wang Y, Yang L, Wei J, et al. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein Cell. 2020. Oct; 11 (10): 771–775. https://doi.org/10.1007/s13238-020-00718-6

14. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of 2019 novel coronavirus infection in China. N Engl J Med. 2020; 382 (18): 1708–20 DOI: 10.1056/NEJMoa2002032.

15. El-Ghiaty MA, Shoieb SM, El-Kadi. Cytochrome P450-mediated drug interactions in COVID-19 patients: Current findings and possible mechanisms. Med Hypotheses. 2020 Jun 26; 144: 110033. DOI: 10.1016/j.mehy.2020.110033.

16. Adams D. H., Hubscher S. G. Systemic viral infections and collateral damage in the liver. Am.J. Pathol. 2006, 168, 1057–1059. DOI: 10.2353/ajpath.2006.051296.

17. Xu Z, Shi L, Wang Y, Zhang J, Huang L, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020. https://doi.org/10.1016/S2213-2600(20)30076-X

18. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020. https://doi.org/10.1016/S2213-2600(20),30216-2.

19. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18: 844–7. DOI: 10.1111/jth.14768.

20. Lu L, Shuang L, Manman X, Yu P, Zheng S, Duan Z, Liu J, Chen Y, Li J. Risk factors related to hepatic injury in patients with corona virus disease 2019. 2020 Preprint. Available from: medRxiv: 2020.02.28. 20028514.

21. Cao X. COVID-19: иммунопатология и ее значение для терапии. Nat Rev Immunol. 2020; 20: 269–270.

22. Zhang XJ, Cheng X, Yan ZZ, Fang J, Wang X, Wang W, et al. An ALOX12–12- HETE-GPR 31 signaling axis is a key mediator of hepatic ischemia-reperfusion injury. Nat Med. 2018; 24: 73–83. https://doi.org/10.1038/nm.4451.

23. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497–506.

24. Zha L, Li S, Pan L, Tefsen B, Li Y, French N, Chen L, Yang G, Villanueva EV. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19) Med J Aust. 2020.

25. Wu J, Song S, Cao HC, Li LJ. Liver diseases in COVID-19: Etiology, treatment and prognosis. World J Gastroenterol. 2020; 26 (19): 2286–2293. DOI: 10.3748/wjg.v26.i19.2286.

26. Wu J. et al. Liver diseases in COVID-19: Etiology, treatment and prognosis //World Journal of Gastroenterology. 2020. Т. 26. N19. С. 2286. DOI: 10.3748/wjg.v26.i19.2286.

27. Cheong J. et al. Gastrointestinal and liver manifestations of COVID-19. // Saudi journal of gastroenterology: official journal of the Saudi Gastroenterology Association. 2020. Т. 26. N5. С. 226–232. DOI: 10.4103/sjg.SJG_147_20.

28. Musa S. Hepatic and gastrointestinal involvement in coronavirus disease 2019 (COVID-19): What do we know till now? Arab J Gastroenterol. 2020; 21: 3–8.

29. Jothimani D. et al. COVID-19 and Liver. // Journal of hepatology. 2020. DOI: 10.1016/j.jhep.2020.06.006.

30. Amin M. COVID-19 and the liver: overview. // European Journal of Gastroenterology & Hepatology. 2020. Т. 30. С. 00.–00. DOI: 10.1097/MEG.0000000000001808.

31. Chen H, Du Q. Potential Natural Compounds for Preventing SARS-CoV-2 (2019-nCoV) Infection. 2020 Preprint. Available from: Preprints: 2020010358.

32. Г.В. Волынец, А.И. Хавкин / Урсодезоксихолевая кислота и болезни печени. Лечащий врач. 2020. № 6. С. 62.–68. DOI: 10.26295/OS.2020.75.99.012.

33. А.Г. Малявин, Т.В. Адашева, С.Л. Бабак, Е.Е. Губернаторова, О.В. Уварова. Медицинская реабилитация больных, перенесших COVID-19 инфекцию. Методические рекомендации. Терапия. 2020; 5 (приложение): 1–48. DOI: https://dx.doi.org/10.18565/therapy.2020.5suppl.1-48.

34. EASL Clinical Practice Guidelines: Drug-induced liver injury. Available at: https://easl.eu/wp-content/uploads/2019/04/EASLCPG-Drug-induced-liver-injury-2019-04.pdf (date of access: 01.08.2020).

35. Isık S., Karaman M., Cilaker M.S. Beneficial effects of ursodeoxycholic acid via inhibition of airway remodelling, apoptosis of airway epithelial cells, and Th2 immune response in murine model of chronic asthma. Allergol Immunopathol (Madr). 2017; 45(4): 339–49. DOI: 10.1016/j.aller.2016.12.003.

36. Subramanian S, Iles T, Ikramuddin S, Steer CJ. Merit of an Ursodeoxycholic Acid Clinical Trial in COVID-19 Patients. Vaccines (Basel). 2020; 8 (2): 320. Published 2020 Jun 19. DOI: 10.3390/vaccines802032081.


Рецензия

Для цитирования:


Пинчук Т.В., Орлова Н.В., Суранова Т.Г., Бонкало Т.И. Механизмы поражения печени при COVID‑19. Медицинский алфавит. 2020;1(19):39-46. https://doi.org/10.33667/2078-5631-2020-19-39-46

For citation:


Pinchuk T.V., Orlova N.V., Suranova T.G., Bonkalo T.I. Mechanisms of liver damage in COVID-19. Medical alphabet. 2020;1(19):39-46. (In Russ.) https://doi.org/10.33667/2078-5631-2020-19-39-46

Просмотров: 1341


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)