Preview

Medical alphabet

Advanced search

Standardization of spirometry: what’s new in 2019 update (Part 2)

https://doi.org/10.33667/2078-5631-2020-14-10-18

Abstract

Improvements in equipment, new research studies and enhanced quality assurance approaches have led to the need to update the 2005 technical standards for spirometry. The article presents the main updates, developed by an international joint task force by the American Thoracic Society and the European Respiratory Society in 2019. The characteristics of acceptability, usability, and repeatability, criteria grading the quality of the test session, the choice of main reported values are described.

About the Authors

L. D. Kiryukhina
Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation
Russian Federation


P. V. Struchkov
Clinical Hospital N 85 of FMBA of Russia; Academy of postgraduate education under FSBU FSCC of FMBA of Russia
Russian Federation
Moscow


References

1. Miller M. R., Hankinson J., Brusasco V., et al. ATS/ERS Task Force. Standardisation of spirometry. // Eur Respir J — 2005. — № 26. — P. 319–338.

2. Graham B. L., Steenbruggen I., Miller M. R. Standardization of Spirometry 2019 Update An Official American Thoracic Society and European Respiratory Society Technical Statement // Amer. J. Respir. Crit. Care Med. — 2019. — Vol. 200 (8). — P. e70 – e88.

3. Спирометры, предназначенные для измерения параметров форсированного выдоха человека. Технические требования и методы испытаний. Национальный стандарт Российской Федерации. ГОСТ Р ИСО 26782 — 2016. [Электронный ресурс] //URL: https://standartgost.ru/g/ГОСТ_Р_ИСО_26782–2016. (дата обращения: 12.01.2020)

4. McKibben J. M., McKay R. T., Freeman A. G., et al. Redefining spirometry hesitating start criteria based on the ratio of extrapolated volume to timed FEVs. // Chest — 2011. — №140. — P. 164 169.

5. Müller-Brandes C., Krämer U., Gappa M., et al. LUNOKID: can numerical American Thoracic Society/European Respiratory Society quality criteria replace visual inspection of spirometry? // Eur Respir J — 2014. — №43. — P. 1347–1356.

6. National Institute for Occupational Safety and Health (NIOSH). Spirometry quality assurance: common errors and their impact on test results. Washington, DC: NIOSH; 2012 Publication No. 2012–116. [Электронный ресурс] // URL: https://www.cdc.gov/niosh/docs/2012–116/pdfs/2012–116.pdf. (дата обращения: 02.04.2020).

7. American Thoracic Society. Standardization of spirometry, 1994 update. //Am J Respir Crit Care Med. — 1995. — №152. — P. 1107–1136.

8. Glover R., Cooper B. G., Lloyd J. Forced expiratory time (FET) as an indicator for airways obstruction. // Eur. Respir. J. — 2014. — №44. — P.1819.

9. Giner J., Plaza V., Rigau J., et al. Spirometric standards and patient characteristics: an exploratory study of factors affecting fulfillment in routine clinical practice. // Respir. Care. — 2014. — №59. — P. 1832–1837.

10. Sumphao-Ngern P., Foocharoen C., Boonsawat W., et al. Scleroderma Research Group. Causes and prevalence of inadequate pulmonary function testing among patients with systemic sclerosis. // Arch. Med. Sci. — 2015. — №11. — P. 1255–1260.

11. Czajkowska-Malinowska M., Tomalak W., Radliński J. Quality of spirometry in the elderly. // Pneumonol. .Alergol. Pol. — 2013. — №81. — P. 511–517.

12. Hankinson J.L., Eschenbacher B., Townsend M., et al. Use of forced vital capacity and forced expiratory volume in 1 second quality criteria for determining a valid test. // Eur Respir J — 2015. — №45. — P. 1283–1292.

13. Müller-Brandes C., Krämer U., Gappa M., et al. LUNOKID: can numerical American Thoracic Society/European Respiratory Society quality criteria replace visual inspection of spirometry? // Eur Respir J. — 2014. — №43. — P.1347–1356.

14. Hankinson J. L., Bang K. M. Acceptability and reproducibility criteria of the American Thoracic Society as observed in a sample of the general population. // Am Rev Respir Dis. — 1991. — №143. — P.516–521.

15. Beydon N., Davis S. D., Lombardi E., et al. American Thoracic Society/ European Respiratory Society Working Group on Infant and Young Children Pulmonary Function Testing. An official American Thoracic Society/European Respiratory Society statement: pulmonary function testing in preschool children. // Am J Respir Crit Care Med. — 2007. — №175. — P.1304–1345.

16. Kirkby J., Welsh L., Lum S., et al. EPICure Study Group. The EPICure study: comparison of pediatric spirometry in community and laboratory settings. // Pediatr Pulmonol. — 2008. — №43. — P.1233–1241.

17. Ferris BG Jr., Speizer F. E., Bishop Y., et al. Spirometry for an epidemiologic study: deriving optimum summary statistics for each subject. // Bull Eur Physiopathol Respir. — 1978. — №14. — P.145–166.

18. Kanner R. E., Schenker M. B., Muñoz A., et al. Spirometry in children: methodology for obtaining optimal results for clinical and epidemiologic studies. // Am Rev Respir Dis. —1983. — №127. — P.720–724.

19. Barjaktarevic I., Kaner R., Buhr R. G., et al. Bronchodilator responsiveness or reversibility in asthma and COPD: a need for clarity. // Int J Chron Obstruct Pulmon Dis. — 2018. — №13. — P.3511–3513.

20. Davis B. E., Blais C. M., Cockcroft D. W. Methacholine challenge testing: comparative pharmacology. // J Asthma Allergy. — 2018. — №11. — P.89–99.

21. LaForce C., Korenblat P., Osborne P. et al. 24-Hour bronchodilator efficacy of single doses of indacaterol in patients with persistent asthma: comparison with placebo and formoterol. // Curr Med Res Opin. — 2009. — №25. — P.2353–2359.

22. Jones T. E, Southcott A., Homan S. Drugs potentially affecting the extent of airways reversibility on pulmonary function testing are frequently consumed despite guidelines. // Int J Chron Obstruct Pulmon Dis. — 2013. — №8. — P.383–388.

23. Coates A. L, Wanger J., Cockcroft D. W., et al. ERS technical standard on bronchial challenge testing: general considerations and performance of methacholine challenge tests. // Eur. Respir. J. — 2017. — №49:1601526 [Электронный ресурс] // URL: https://doi.org/10.1183/13993003.01526–2016 (дата обращения 06.04.2020).

24. Enright P. L., Lebowitz M. D., Cockroft D. W. Physiologic measures: pulmonary function tests: asthma outcome. // Am. J Respir. Crit. Care Med. — 1994. — №149. — P.9–18.

25. Ward H., Cooper B. G, Miller M. R. Improved criterion for assessing lung function reversibility. // Chest. — 2015. — №148. — P.877–886.

26. Quanjer P. H., Ruppel G. L., Langhammer A., et al. Bronchodilator response in FVC is larger and more relevant than in FEV1 in severe airflow obstruction. // Chest. — 2017. — №151. — P.1088–1098.

27. Crenesse D., Berlioz M., Bourrier T., et al. Spirometry in children aged 3 to 5 years: reliability of forced expiratory maneuvers. // Pediatr. Pulmonol. — 2001. — №32. — P.56–61.

28. Piccioni P., Borraccino A., Forneris M. P., et al. Reference values of forced expiratory volumes and pulmonary flows in 3–6 year children: a cross-sectional study. // Respir. Res. — 2007. — №8 (14) [Электронный ресурс] // URL: http://respiratory-research.com/content/8/1/14 (дата обращения 06.04.2020).

29. Quanjer P. H., Stanojevic S., Cole T. J, et al. ERS Global Lung Function Initiative. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the Global Lung Function 2012 equations. // Eu.r Respir. J. — 2012. — №40. — P.1324–1343.

30. Swanney M. P., Jensen R. L., Crichton D. A., et al. FEV6 is an acceptable surrogate for FVC in the spirometric diagnosis of airway obstruction and restriction // Am. J Respir. Crit. Care Med. — 2000. — №162. — P.917–919.

31. Vandevoorde J., Verbanck S., Schuermans D., et al. FEV1/FEV6 and FEV6 as an alternative for FEV1/FVC and FVC in the spirometric detection of airway obstruction and restriction. // Chest. — 2005. — №127. — P.1560–1564.

32. Kainu A., Lindqvist A., Sarna S., et al. Intra-session repeatability of FET and FEV6 in the general population. // Clin. Physio.l Funct. Imaging. — 2008. — №28. — P.196–201.

33. Bellia V., Sorino C., Catalano F., et al. Validation of FEV6 in the elderly: correlates of performance and repeatability. // Thorax. — 2008. — №63. — P.60–66.

34. Perez-Padilla R., Wehrmeister F. C., Celli B. R., et al. PLATINO Team. Reliability of FEV1/FEV6 to diagnose airflow obstruction compared with FEV1/FVC: the PLATINO longitudinal study. // PLoS One. — 2013. — №8 (8): e67960. [Электронный ресурс] // URL: https://doi.org/10.1371/journal.pone.0067960 (дата обращения 06.04.2020).

35. Akpinar-Elci M., Fedan K. B., Enright P. L. FEV6 as a surrogate for FVC in detecting airways obstruction and restriction in the workplace. // Eur. Respir. J. — 2006. — №27. — Р.374–377.

36. Hankinson J. L., Odencrantz J. R., Fedan K. B. Spirometric reference values from a sample of the general U.S. population. // Am. J Respir. Crit. Care Med. — 1999. — №159. — Р.179–187.

37. Hansen J. E., Porszasz J., Casaburi R., et al. Re-defining lower limit of normal for FEV1/FEV6, FEV1/FVC, FEV3/FEV6 and FEV3/FVC to improve detection of airway obstruction. // Chronic. Obstr. Pulm. Dis. — 2015. — №2. — Р.94–102.

38. Marsh S., Aldington S., Williams M., et al. Complete reference ranges for pulmonary function tests from a single New Zealand population. // N Z Med J. — 2006. — №119. — U2281. [коррекция N Z Med J. — №120. — U2551.]

39. Tian X. Y., Liu C. H., Wang D. X., et al. Spirometric reference equations for elderly Chinese in Jinan aged 60–84 Years. // Chin. Med. J (Engl). — 2018. — №131. — Р.1016–1022.

40. Raposo L. B., Bugalho A., Gomes M. J. Contribution of flow-volume curves to the detection of central airway obstruction. // J. Bras. Pneumol. — 2013. — №39. — Р.447–454.

41. Modrykamien A. M., Gudavalli R., McCarthy K., et al. Detection of upper airway obstruction with spirometry results and the flow-volume loop: a comparison of quantitative and visual inspection criteria. // Respir.Care. — 2009. — №54. — Р.474–479.

42. Culver B. H., Graham B. L., Coates A.L., et al. ATS Committee on Proficiency Standards for Pulmonary Function Laboratories. Recommendations for a standardized pulmonary function report: an Official American Thoracic Society technical statement. // Am J Respir Crit Care Med. — 2017. — №196. — Р.1463–1472.

43. Brusasco V., Pellegrino R., Rodarte J. R. Vital capacities in acute and chronic airway obstruction: dependence on flow and volume histories // Eur. Respir. J. — 1997. — Vol.10. — P. 1316–1320.

44. Borg B. M., Thompson B. R. The measurement of lung volumes using body plethysmography: a comparison of methodologies // Respir. Care. — 2012. — Vol. 57. — P. 1076–1083.


Review

For citations:


Kiryukhina L.D., Struchkov P.V. Standardization of spirometry: what’s new in 2019 update (Part 2). Medical alphabet. 2020;1(14):10-18. (In Russ.) https://doi.org/10.33667/2078-5631-2020-14-10-18

Views: 576


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)