Preview

Медицинский алфавит

Расширенный поиск

Вопросы внедрения современных методов автоматизированной диагностики новообразований кожи в клиническую практику

https://doi.org/10.33667/2078-5631-2020-6-76-78

Аннотация

Несмотря на множество имеющихся и разрабатываемых алгоритмов автоматизированной диагностики меланомы и других злокачественных новообразований кожи, они остаются практически недоступными для широкой медицинской практики. Малое число публикаций об эффективности уже созданных систем искусственного интеллекта свидетельствует о проблемах их внедрения в клиническую практику и современную рутину обследования в дерматологии и онкологии. Востребованными остаются как новые алгоритмы и программные решения на их основе, так и работы, подтверждающие их точность на сопоставимом и проверяемом клиническом материале.

Об авторах

В. Ю. Сергеев
ФГБУ ДПО «Центральная государственная медицинская академия» Управления делами Президента России
Россия

к. м. н., доцент кафедры дерматовенерологии и косметологии

г. Москва



Ю. Ю. Сергеев
ФГБУ ДПО «Центральная государственная медицинская академия» Управления делами Президента России
Россия

член РОО содействия развитию дерматоскопии и оптической диагностики кожи, врач-дерматовенеролог

г. Москва



О. Б. Тамразова
ФГАОУ ВО «Российский университет дружбы народов»
Россия

д. м. н., проф. кафедры дерматовенерологии

г. Москва



В. Г. Никитаев
ФГАОУ ВО «Национальный исследовательский ядерный университет «МИФИ»
Россия

д. т. н., проф., зав. кафедрой компьютерных медицинских систем

г. Москва



А. Н. Проничев
ФГАОУ ВО «Национальный исследовательский ядерный университет «МИФИ»
Россия

к. т. н., доцент отделения биотехнологий офиса образовательных программ (М)

г. Москва



Список литературы

1. Fisher R. A. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics. 1936; 7 (2): 179–188.

2. Schindewolf T et al., Classification of melanocytic lesions with color and texture analysis using digital image processing. Anal Quant Cytol Histol. 1993 Feb; 15 (1): 1–11.

3. Сержантов К. А., Лисовская М. Г. Дифференциация онкологических патологий с использованием алгоритмов машинного обучения. Информационные технологии в моделировании и управлении: подходы, методы, решения. 2019; 564–569.

4. Уфимцева М.А, Шубина А. С., Петкау В. В., Созыкин А. В. Программа для дифференциальной диагностики пигментных доброкачественных и злокачественных новообразований кожи SkinCancerStop. Свидетельство о государственной регистрации программы для ЭВМ, рег. № 2018614153, опубл. 02.04.2018. Бюл. № 4.

5. Никитаев В. Г., Нагорнов О. В., Проничев А. Н., Поляков Е. В., Дмитриева В. В., Зайцев С. М., Сельчук В. Ю., Тамразова О. Б., Сергеев В. Ю., Кобелев С. А., Козырева А. В., Скрипник А. С. Сп 2712919, опубл. 03.02.2020. Бюл. № 4.

6. Hosny KM, Kassem MA, Foaud MM. Classification of skin lesions using transfer learning and augmentation with Alex-net. PLoS One. 2019; 14 (5): e0217293.

7. Unlu EI, Cinar A. Classification of Skin Images with Respect to Melanoma and Non-Melanoma Using the Deep Neural Network. IOSR Journal of Engineering (IOSRJEN). 2018; 08 (12): 35–40.

8. Yu L, Chen H, Dou Q, Qin J, Heng PA. Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks. IEEE Trans Med Imaging. 2017; 36 (4): 994–1004.

9. Haenssle H. A., Fink C. et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018; 29 (8): 1836–1842.

10. Hekler A, Utikal JS, Enk AH, et al. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur J Cancer. 2019; 118: 91–96.

11. Rubegni P, Burroni M, Cevenini G, Perotti R, Dell’Eva G, Barbini P, Fimiani M, Andreassi L. Digital dermoscopy analysis and artificial neural network for the differentiation of clinically atypical pigmented skin lesions: a retrospective study. Journal of Investigative Dermatology. 2002 Aug; 119 (2): 471–4.

12. Marco Burroni, Rosamaria Corona, Giordana Dell’Eva, Francesco Sera, Riccardo Bono, Pietro Puddu, Roberto Perotti, Franco Nobile, Lucio Andreassi, and Pietro Rubegni Melanoma Computer-Aided Diagnosis: Reliability and Feasibility Study Clin Cancer Res 2004 10: 1881–1886.

13. Wollina, U., Burroni, M., Torricelli, R., Gilardi, S., Dell’Eva, G., Helm, C., & Bardey, W. Digital dermoscopy in clinical practise: a three-centre analysis. Skin Research and Technology. 2007; 13 (2): 133–142.

14. Hoffmann K. et al. Diagnostic and neural analysis of skin cancer (DANAOS). A multicentre study for collection and computer-aided analysis of data from pigmented skin lesions using digital dermoscopy. Br J Dermatol. 2003 Oct; 149 (4): 801–9.

15. Masoomeh Barzegari et al. Computer-aided dermoscopy for diagnosis of melanoma. BMC Dermatol. 2005 Jul 6; 5: 8.

16. Dinnes J. et al. Dermoscopy, with and without visual inspection, for diagnosing melanoma in adults. Cochrane Database of Systematic Reviews 2018, Issue 12. Art. No.: CD 011902.

17. Краюшкин П. В. Возможности искусственного интеллекта в диагностике онкологических заболеваний кожи. Косметика и медицина. 2018 (3): 90–99.

18. Haenssle HA, Fink C, Toberer F, et al. Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. Ann Oncol. 2020; 31 (1): 137–143, Supplementary methods.

19. Fink C, Blum A, Buhl T, et al. Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas. J Eur Acad Dermatol Venereol. 2019; 10.1111/jdv.16165.

20. Haenssle HA, Fink C, Toberer F, et al. Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. Ann Oncol. 2020; 31 (1): 137–143.

21. Winkler JK, Sies K, Fink C, et al. Melanoma recognition by a deep learning convolutional neural network-Performance in different melanoma subtypes and localisations. Eur J Cancer. 2020; 127: 21–29.

22. Rosario F. Performance of a computer-aided digital dermoscopic image analyzer for melanoma detection in 1,076 pigmented skin lesion biopsies. J Am Acad Dermatol. 2018 May; 78 (5): 927–934.e6.

23. Гаврилов Д. А., Мелерзанов А. В., Щелкунов Н. Н., Закиров Э. И. Применение технологий глубокого обучения для диагностики кожных заболеваний на основе нейронных сетей. Медицинская техника. 2018 (5); 40–44.

24. Сергеев В. Ю., Сергеев Ю. Ю., Тамразова О. Б., Никитаев В. Г., Проничев А. Н. Автоматизированная диагностика новообразований в дерматологии с применением дистанционных технологий. Медицинская техника. 2019; 3: 32–33.


Рецензия

Для цитирования:


Сергеев В.Ю., Сергеев Ю.Ю., Тамразова О.Б., Никитаев В.Г., Проничев А.Н. Вопросы внедрения современных методов автоматизированной диагностики новообразований кожи в клиническую практику. Медицинский алфавит. 2020;(6):76-78. https://doi.org/10.33667/2078-5631-2020-6-76-78

For citation:


Sergeev V.Yu., Sergeev Yu.Yu., Tamrazova O.B., Nikitaev V.G., Pronichev A.N. On modern methods of automated diagnosis of skin tumors in clinical practice. Medical alphabet. 2020;(6):76-78. (In Russ.) https://doi.org/10.33667/2078-5631-2020-6-76-78

Просмотров: 422


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)