Preview

Медицинский алфавит

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Роль молекулярно-генетических факторов в патогенезе и диагностике неалкогольной жировой болезни печени (обзор литературы и собственные данные)

https://doi.org/10.33667/2078-5631-2020-5-13-19

Полный текст:

Аннотация

Неалкогольная жировая болезнь печени является самым распространенным заболеванием печени и, как правило, имеет доброкачественное течение. Но при формировании стеатогепатита значительно увеличивается вероятность развития фиброза, цирроза и гепатоцеллюлярной карциномы. На данный момент нет надежных предикторов агрессивного течения заболевания, но наиболее перспективными кандидатами на эту роль могут стать молекулярно-генетические методы. В статье рассматривается роль генов PNPLA3, TM6SF2, SERPINA1 и HFE в патогенезе и течение неалкогольной жировой болезни печени, а также приведены данные по распространенности патологических аллелей данных генов среди пациентов, проживающих в г. Санкт-Петербурге.

Об авторах

Д. В. Сидоренко
ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет имени академика И. П. Павлова» Минздрава России
Россия

ординатор кафедры клинической лабораторной диагностики с курсом молекулярной медицины

г. Санкт-Петербург



В. Д. Назаров
ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет имени академика И. П. Павлова» Минздрава России
Россия

к. м. н., м. н. с. лаборатории диагностики аутоиммунных заболеваний Научно-методического центра молекулярной медицины Минздрава России

г. Санкт-Петербург



С. В. Лапин
ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет имени академика И. П. Павлова» Минздрава России
Россия

к. м. н., зав. лабораторией диагностики аутоиммунных заболеваний Научно-методического центра молекулярной медицины Минздрава России

г. Санкт-Петербург



В. Л. Эмануэль
ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет имени академика И. П. Павлова» Минздрава России
Россия

д. м. н. проф., зав. кафедрой клинической лабораторной диагностики с курсом молекулярной медицины, директор Научно-методического центра по молекулярной медицине Минздрава России

г. Санкт-Петербург



Список литературы

1. Zezos, P., and E. L. Renner. 2014. Liver transplantation and non-alcoholic fatty liver disease. World Journal of Gastroenterology 20: 15532–15538.

2. Younossi Z. M., Stepanova M., Afendy M., Fang Y., Younossi Y., Mir H., Srishord M. Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin. Gastroenterol. Hepatol. 2011, 9, 524–530.

3. Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011 Aug, 34 (3): 274–85.

4. Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R. Fibrosis progression in nonalcoholic fatty liver versus nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol. 2015, 13: 643–654.

5. Caldwell SH, Crespo DM. The spectrum expanded: cryptogenic cirrhosis and the natural history of nonalcoholic fatty liver disease. J Hepatol 2004, 40: 578–84.

6. А. С. Тихомирова, В. А. Кисляков, И. Е. Байкова, И. Г. Никитин. Клинико-морфологические параллели полиморфизма гена PNPLA3 у пациентов с неалкогольной жировой болезнью печени. Терапевтический архив. 2018, 85–88.

7. Ercin, C.N., T. Dogru, H. Genc et al. 2015. Insulin resistance but not visceral adiposity index is associated with liver fibrosis in nondiabetic subjects with nonalcoholic fatty liver disease. Metabolic Syndrome and Related Disorders 13: 319–325.

8. Kovalic AJ, Banerjee P, Tran QT, Singal AK, Satapathy SK. Genetic and Epigenetic Culprits in the Pathogenesis of Nonalcoholic Fatty Liver Disease. J Clin Exp Hepatol. 2018 Dec, 8 (4): 390–402.

9. Danford CJ, Yao ZM, Jiang ZG. Non-alcoholic fatty liver disease: a narrative review of genetics. J Biomed Res. 2018 Nov 20; 32 (5): 389–400.

10. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, Boerwinkle E, Cohen JC, Hobbs HH. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008 Dec и 40 (12): 1461–5.

11. Pirazzi C, Valenti L, Motta BM, et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet. 2014; 23 (15): 4077–4085.

12. Mitsche MA, Hobbs HH, Cohen JC (2018) Patatin-like phospholipase domain-containing protein 3 promotes transfer of essential fatty acids from triglycerides to phospholipids in hepatic lipid droplets. J Biol Chem 293 (18): 6958–6968.

13. Li JZ, Huang Y, Karaman R, Ivanova PT, Brown HA, Roddy T, Castro-Perez J, Cohen JC, Hobbs HH. Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J Clin Invest. 2012 Nov; 122 (11): 4130–44.

14. Smagris E, BasuRay S, Li J et al (2015) Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 61 (1): 108–118.

15. Lindén D, Ahnmark A, Pingitore P et al. Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice. Mol Metab. 2019 Apr; 22: 49–61.

16. Xu R, Tao A, Zhang S, Deng Y, Chen G. Association between patatin-like phospholipase domain containing 3 gene (PNPLA3) polymorphisms and nonalcoholic fatty liver disease: a HuGE review and meta-analysis. Sci Rep. 2015 Mar 20; 5: 9284.

17. Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology. 2011 Jun, 53 (6): 1883–94.

18. Krawczyk M., Rau, M., Schattenberg et al. (2016). Combined effects of thePNPLA3rs738409, TM6S-F2rs58542926, and MBOAT7rs641738 variants on NAFLD severity: a multicenter biopsy-based study. Journal of Lipid Research, 58 (1), 247–255.

19. Vespasiani-Gentilucci, U., Gallo, P., Porcari, A. et al. (2016). The PNPLA3 rs738409 C > G polymorphism is associated with the risk of progression to cirrhosis in NAFLD patients. Scandinavian Journal of Gastroenterology, 51 (8), 967–973.

20. Khlaiphuengsin A, Kiatbumrung R, Payungporn S, Pinjaroen N, Tangkijvanich P. Association of PNPLA3 Polymorphism with Hepatocellular Carcinoma Development and Prognosis in Viral and Non-Viral Chronic Liver Diseases. Asian Pac J Cancer Prev. 2015, 16 (18): 83.

21. Speliotes EK, Butler JL, Palmer CD, Voight BF. PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology. 2010 Sep, 52 (3): 904–12.

22. Kozlitina J, Smagris E, Stender S et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2014 Apr; 46 (4): 352–6.

23. Ehrhardt N, Doche ME, Chen S et al. Hepatic Tm6sf2 overexpression affects cellular ApoB-trafficking, plasma lipid levels, hepatic steatosis and atherosclerosis. Hum Mol Genet. 2017 Jul 15, 26 (14): 2719–2731.

24. E.A. O’Hare, R. Yang, L. M. Yerges-Armstrong, U. Sreenivasan, R. McFarland, C. C. Leitch, et al., TM6SF2 rs58542926 impacts lipid processing in liver and small intestine, Hepatology 65 (5) (2017) 1526–1542.

25. Chen LZ, Xia HH, Xin YN, Lin ZH, Xuan SY. TM6SF2 E 167K variant, a novel genetic susceptibility variant, contributing to nonalcoholic fatty liver disease. J Clin Transl Hepatol 2015; 3: 265–270.

26. Ruhanen H, Nidhina Haridas PA, Eskelinen EL, Eriksson O, Olkkonen VM, Käkelä R. Depletion of TM6SF2 disturbs membrane lipid composition and dynamics in HuH7 hepatoma cells. Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Jul, 1862 (7): 676–685.

27. Du S, Lu L, Miao Y, Jin W, Li C, Xin Y, Xuan S. E 167K polymorphism of TM6SF2 gene affects cell cycle of hepatocellular carcinoma cell HEPA 1–6. Lipids Health Dis. 2017 Apr 13, 16 (1): 76.

28. Mahdessian H, Taxiarchis A, Popov S, et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc Natl Acad Sci USA 2014, 111: 8913–8918.

29. Smagris E., Gilyard S., BasuRay S., Cohen J. C. and Hobbs H. H. (2016) Inactivation of Tm6sf2, a Gene Defective in Fatty Liver Disease, Impairs Lipidation but Not Secretion of Very Low Density Lipoproteins. J. Biol. Chem., 291, 10659–10676.

30. Di Costanzo A, Belardinilli F, Bailetti D et al. Evaluation of Polygenic Determinants of Non-Alcoholic Fatty Liver Disease (NAFLD) By a Candidate Genes Resequencing Strategy. Sci Rep. 2018 Feb 27; 8 (1): 3702.

31. Viitasalo A, Pihlajamäki J, Paananen J, Atalay M, Lindi V, Lakka TA. Associations of TM6SF2 167K allele with liver enzymes and lipid profile in children: the PANIC Study. Pediatr Res 2016, 79: 684–688.

32. Dongiovanni P, Petta S, Maglio C, Fracanzani AL, Pipitone R, Mozzi E. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 2015; 61: 506–514.

33. Liu YL, Reeves HL, Burt AD, Tiniakos D, McPherson S, Leathart JB. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun 2014, 5: 4309.

34. Kim DS, Jackson AU, Li YK, Stringham HM, Kuusisto J, Kangas AJ. Novel association of TM6SF2 rs58542926 genotype with increased serum tyrosine levels and decreased apoB-100 particles in Finns. J Lipid Res 2017; 58: 1471–1481.

35. Falleti E, Cussigh A, Cmet S, Fabris C, Toniutto P. PNPLA3 rs738409 and TM6SF2 rs58542926 variants increase the risk of hepatocellular carcinoma in alcoholic cirrhosis. Dig Liver Dis 2016; 48: 69–75.

36. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011 Feb, 11 (2): 98–107.

37. Netea MG, Joosten LA, Lewis E et al. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat Med. 2006 Jun, 12 (6): 650–6.

38. Mansuy-Aubert V, Zhou QL, Xie X et al. Imbalance between neutrophil elastase and its inhibitor α1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab. 2013 Apr 2, 17 (4): 534–48.

39. ATS/ERS, American Thoracic Society/European Respiratory Society statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency, Am. J. Respir. Crit. Care Med. 168 (2003) 818–900.

40. Silva, D., Oliveira, M. J., Guimarães et al. (2016). Alpha-1-antitrypsin (SERPINA1) mutation spectrum: Three novel variants and haplotype characterization of rare deficiency alleles identified in Portugal. Respiratory Medicine, 116, 8–18.

41. Toldo S, Seropian IM, Mezzaroma E, Van Tassell BW, Salloum FN, Lewis EC, Voelkel N, Dinarello CA, Abbate A. Alpha-1 antitrypsin inhibits caspase-1 and protects from acute myocardial ischemia-reperfusion injury. J Mol Cell Cardiol. 2011 Aug, 51 (2): 244–51.

42. Greene CM, Marciniak SJ, Teckman J, Ferrarotti I, Brantly ML, Lomas DA, Stoller JK, et al. alpha1-Antitrypsin deficiency. Nat Rev Dis Primers 2016 и 2: 16051.

43. de Serres FJ. Worldwide racial and ethnic distribution of alpha1-antitrypsin deficiency: summary of an analysis of published genetic epidemiologic surveys. Chest. 2002 Nov; 122 (5): 1818–29.

44. Hamesch K, Mandorfer M, Pereira VM et al. European Alpha1-Liver Study Group. Liver Fibrosis and Metabolic Alterations in Adults With alpha-1-antitrypsin Deficiency Caused by the Pi*ZZ Mutation. Gastroenterology. 2019 Sep; 157 (3): 705–719.

45. Regev A, Guaqueta C, Molina EG et al. Does the heterozygous state of alpha-1 antitrypsin deficiency have a role in chronic liver diseases? Interim results of a large case-control study. J Pediatr Gastroenterol Nutr. 2006 Jul; 43 Suppl 1: S 30–5.

46. Valenti L, Dongiovanni P, Piperno A et al. Alpha 1-antitrypsin mutations in NAFLD: high prevalence and association with altered iron metabolism but not with liver damage. Hepatology. 2006 Oct; 44 (4): 857–64.

47. Strnad P, Buch S, Hamesch K et al. Heterozygous carriage of the alpha1-antitrypsin Pi*Z variant increases the risk to develop liver cirrhosis. Gut. 2019 Jun; 68 (6): 1099–1107.

48. El-Rayah EA, Twomey PJ, Wallace EM et al. Both α-1-antitrypsin Z phenotypes and low caeruloplasmin levels are over-represented in alcohol and nonalcoholic fatty liver disease cirrhotic patients undergoing liver transplant in Ireland. Eur J Gastroenterol Hepatol. 2018 Apr; 30 (4): 364–367.

49. Valenti L, Dongiovanni P, Fracanzani AL, et al. Increased susceptibility to nonalcoholic fatty liver disease in heterozygotes for the mutation responsible for hereditary hemochromatosis. Dig Liver Dis 2003; 35: 172–178.

50. Dongiovanni P, Valenti L, Ludovica Fracanzani A, et al. Iron depletion by deferoxamine up-regulates glucose uptake and insulin signaling in hepatoma cells and in rat liver. Am J Pathol 2008, 172: 738–747.

51. Valenti L, Fracanzani AL, Dongiovanni P, et al. Iron depletion by phlebotomy improves insulin resistance in patients with nonalcoholic fatty liver disease and hyperferritinemia: evidence from a case-control study. Am J Gastroenterol 2007, 102: 1251–1258.

52. Facchini FS, Hua NW, Stoohs RA. Effect of iron depletion in carbohydrate-intolerant patients with clinical evidence of nonalcoholic fatty liver disease. Gastroenterology. 2002, 122: 931–939.

53. Bacon B. R., P. C. Adams, K. V. Kowdley, L. W. Powell, and A. S. Tavill. 2011. Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology 54: 328–343.

54. Fleming R. E., and P. Ponka. 2012. Iron overload in human disease. N. Engl. J. Med. 366: 348–359.

55. Chua A. C., R. M. Graham, D. Trinder, and J. K. Olynyk. 2007. The regulation of cellular iron metabolism. Crit. Rev. Clin. Lab. Sci. 44: 413–459.

56. Cabantchik ZI. Labile iron in cells and body fluids: physiology, pathology, and pharmacology. Front Pharmacol 2014, 45, 5.

57. Pietrangelo A. Metals, oxidative stress, and hepatic fibrogenesis. Semin Liver Dis 1996, 13–30, 16.

58. Tan TC, Crawford DH, Jaskowski LA et al. Altered lipid metabolism in Hfe-knockout mice promotes severe NAFLD and early fibrosis. Am J Physiol Gastrointest Liver Physiol. 2011 Nov, 301 (5): G865–76.

59. Wagner J, Fillebeen C, Haliotis T, Charlebois E, Katsarou A, Mui J, Vali H, Pantopoulos K. Mouse models of hereditary hemochromatosis do not develop early liver fibrosis in response to a high fat diet. PLoS One. 2019 Aug 23; 14 (8): e0221455.

60. Hanson EH, Imperatore G, Burke W. HFE gene and hereditary hemochromatosis: a HuGE review. Human Genome Epidemiology. Am J Epidemiol. 2001 Aug 1; 154 (3): 193–206.

61. Ye Q, Qian BX, Yin WL, Wang FM, Han T. Association between the HFE C 282Y, H63D Polymorphisms and the Risks of Non-Alcoholic Fatty Liver Disease, Liver Cirrhosis and Hepatocellular Carcinoma: An Updated Systematic Review and Meta-Analysis of 5,758 Cases and 14,741 Controls. PLoS One. 2016 Sep 22; 11 (9): e0163423.

62. Raszeja-Wyszomirska J, Kurzawski G, Lawniczak M, Miezynska-Kurtycz J, Lubinski J. Nonalcoholic fatty liver disease and HFE gene mutations: a Polish study. World J Gastroenterol. 2010 May 28; 16 (20): 2531–6.

63. Hernaez R, Yeung E, Clark JM, Kowdley KV, Brancati FL, Kao WH. Hemochromatosis gene and nonalcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2011 Nov; 55 (5): 1079–85.

64. Первакова МЮ, Чудинов АЛ, Лапин СВ и др. Диагностическая и клиническая значимость определения фенотипа α-1-антитрипсина при системных васкулитах. Научно-практическая ревматология. 2017; 55 (2): 164–168.

65. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016 Jun; 64 (6): 1388–402.


Для цитирования:


Сидоренко Д.В., Назаров В.Д., Лапин С.В., Эмануэль В.Л. Роль молекулярно-генетических факторов в патогенезе и диагностике неалкогольной жировой болезни печени (обзор литературы и собственные данные). Медицинский алфавит. 2020;(5):13-19. https://doi.org/10.33667/2078-5631-2020-5-13-19

For citation:


Sidorenko D.V., Nazarov V.D., Lapin S.V., Emanuel V.L. Role of molecular genetic factors in pathogenesis and diagnosis of non-alcoholic fatty liver disease (literature review and own data). Medical alphabet. 2020;(5):13-19. (In Russ.) https://doi.org/10.33667/2078-5631-2020-5-13-19

Просмотров: 49


ISSN 2078-5631 (Print)