Preview

Медицинский алфавит

Расширенный поиск

Рак поджелудочной железы: повреждения генома и возможности персонализированной медицины

Аннотация

В статье представлен обзор результатов ряда исследований в области генетики рака поджелудочной железы (РПЖ). Описаны наиболее часто выявляемые дефекты в генах TP53, KRAS, TGFBR 2, PIK3CA, CDKN 2A, SMAD 4 и индуцируемые ими изменения основных сигнальных, а также некоторые иммунологические механизмы опухолевой прогрессии и метастазирования при РПЖ. В обзоре представлены возможности использования выявленных молекулярно-генетических особенностей для выбора новых мишеней для таргетной терапии этого злокачественного вида опухоли с целью повышения эффективности лечения больных РПЖ и дальнейшего развития персонализированной медицины.

Об авторах

Т. И. Романова
ФГБНУ «Научно-исследовательский институт терапии и профилактической медицины» Сибирского отделения Российской академии наук
Россия


И. Н. Григорьева
ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет»
Россия


О. В. Ефимова
ФГБНУ «Научно-исследовательский институт терапии и профилактической медицины» Сибирского отделения Российской академии наук; ГБУЗ НО «Городская клиническая больница № 7»
Россия


Список литературы

1. Siegel R. L., Miller K. D., Jemal A. Cancer statistics, 2016. CA Cancer J. Clin. 2016; 66: 7-30.

2. Давыдов М. И., Аксель Е.М. Статистика злокачественных новообразований в России и странах СНГ в 2012 году. М.: Издательская группа РОНЦ, 2014. - 226 с.

3. Ryan D. P., Hong T. S., Bardeesy N. Pancreatic adenocarcinoma. N. Engl. J. Med. 2014; 371 (11): 1039-49.

4. Котельников А. Г., Патютко Ю. И., Трякин А. А. Клинические рекомендации по диагностике и лечению злокачественных опухолей поджелудочной железы. Москва, 2014. - 44 с.

5. Yadav D., Lowenfels A. B. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 2013; 144: 1252-1261.

6. Goggins M. Markers of pancreatic cancer: working toward early detection. Clin. Cancer. Res. 2011; 5: 635-637.

7. Makohon-Moore A., Brosnan J. A., Iacobuzio-Donahue C.A. Pancreatic cancer genomics: insights and opportunities for clinical translation. Genome Med. 2013; 5: 26-37.

8. Hidalgo M. Pancreatic cancer. N. Engl. J. Med. 2010; 5:1605-1617.

9. Wong K.K, Qian 1, Le Y. The Role of Precision Medicine in Pancreatic Cancer: Challenges for Targeted Therapy, Immune Modulating Treatment, Early Detection and Less Invasive Operations. Cancer Transl. Med. 2016; 2 (2): 41-47.

10. Takai E., Shinichi Yachida Genomic alterations in pancreatic cancer and their relevance to therapy. World J. Gastrointest. Oncol. 2015; 7 (10): 250-258.

11. Vaccaro V., Sperduti I., Milella M. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011; 365: 768-779.

12. Von Hoff D. D., Ervin T., Arena F. P. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. The New England journal of medicine. 2013; 369: 1691-1703.

13. Heestand G.M., Kurzrock R. Molecular landscape of pancreatic cancer: implications for current clinical trials. Oncotarget. 2015; 6: 4553-4561.

14. Sahin I. H., Iacobuzio-Donahue C.A., O’Reilly E. M. Molecular signature of pancreatic adenocarcinoma: An insight from genotype to phenotype and challenges for targeted therapy. Expert Opin. Ther. Targets. 2016; 20 (3): 341-59.

15. Witkiewicz A. K., McMillan E.A., Balaji U. et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 2015; 6: 6744-6755.

16. Forbes S. A., Bindal N., Bamford S. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic acids research. 2011; 39: 945-950.

17. Catalogue of Somatic Mutations in Cancer (COSMIC) Wellcome Trust Sanger Institute; Hinxton, UK: http://www.sanger.ac.uk/cosmic accessed December 1, 2014.

18. Jamieson N. B., Chang D. K., Grimmond S. M., Biankin A. V. Can we move towards personalised pancreatic cancer therapy? Expert Rev. Gastroenterol. Hepatol. 2014; 8 (4): 335-338.

19. Mohammed S., Van Buren G. 2rdi Fisher W. E. Pancreatic cancer: advances in treatment. World J. Gastroenterol 2014; 20 (28): 9354-9360.

20. Okano K., Suzuki Y. Strategies for early detection of resectable pancreatic cancer. World J. Gastroenterol. 2014; 20 (32): 11230-11240.

21. Григорьева И. Н., Ефимова О. В., Суворова Т. С., Тов Н. Л. Генетические аспекты рака поджелудочной железы. Экспериментальная и клиническая гастроэнтерология 2014; 110 (10): 70-76.

22. Jancik S., Dräbek J., Radzioch D., Hajdüch M. Clinical relevance of KRAS in human cancers. Biomed. Biotechnol. 2010; 5: 150960.

23. Heldin C.-H., Moustakas A. Role of Smads in TGFß signaling. Cell Tissue Res. 2012; 5:21-36.

24. Lüttges J., Galehdari H., Bröcker V. et al. Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis. Am. J. Pathol. 2001; 5: 1677-1683.

25. Calhoun E. S., Hucl T., Gallmeier E. et al. Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays. Cancer Res. 2006; 66 (16): 7920-7928.

26. Mermel C. H., Schumacher S. E., Hill B. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-numberalteration in human cancers. Genome Biol. 2011; 12 (4): R41.

27. Biankin A. V., Waddell N., Kassahn K.S. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012; 491 (7424): 399-405

28. Vakiani E., Solit D. B. KRAS and BRAF: drug targets and predictive biomarkers. J. Pathol. 2011; 223: 219-229.

29. Malumbres M., Barbacid M. RAS oncogenes: the first 30 years. Nat. Rev. Cancer. 2003; 3:459-465.

30. Alagesan B., Contino G., Guimaraes A. R. et al. Combined MEK and PI3K inhibition in a mouse model of pancreatic cancer. Clin. Cancer Res. 2015; 21 (2): 396-404.

31. Infante J. R., Fecher L. A., Falchook G. S. et al. Safety, pharmacokinetic, pharmacodynamic and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. The Lancet Oncology. 2012; 13: 773-781.

32. Infante J. R., Somer B. G., Park J. O. et al. A randomised, double-blind, placebo-controlled trial of rametinib, an oral MEK inhibitor, in combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the pancreas. European Journal of Cancer. 2014; 50: 2072-2081.

33. Schonleben F., Qiu W., Ciau N. T. et al. PIK3CA mutations in intraductal papillary mucinous neoplasm/carcinoma of the pancreas. Clin. Cancer. Res. 2006; 12 (12): 3851-3855.

34. Wolpin B. M., Hezel A. F., Abrams T. et al. Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J. Clin. Oncol. 2009; 27 (2): 193-198.

35. Heldin C-H., Miyazono K., ten Dijke P. TGF-b signalling from cell membrane to nucleus through SMAD proteins Nature. 1997; 390: 465-471.

36. Massague J. The TGF-beta family of growth and differentiation factors. Cell 1987; 49 (4): 437-438.

37. Ellenrieder V., Hendler S. F., Boeck W. et al. Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res. 2001; 61 (10): 4222-4228.

38. Derynck R., Zhang Y., Feng X. H. Smads: transcriptional activators of TGF-beta responses. Cell. 1998; 11: 95 (6): 737-740.

39. Tascilar M., Skinner H. G., Rosty C. et al. The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma. Clin. Cancer Res. 2001; 7 (12): 4115-4121.

40. Iacobuzio-Donahue C.A., Fu B., Yachida S. et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J. Clin. Oncol. 2009; 27 (11): 1806-1813.

41. Winter J. M., Tang L. H., Klimstra D.S. et al. Failure patterns in resected pancreas adenocarcinoma: lack of predicted benefit to SMAD4 expression. Ann. Surg. 2013; 258 (2): 331-335.

42. Crane C. H., Varadhachary G. R., Yordy J. S. et al. Phase II trial of cetuximab, gemcitabine, and oxaliplatin followed by chemoradiation with cetuximab for locally advanced (T4) pancreatic adenocarcinoma: correlation of Smad4 (Dpc4) immunostaining with pattern of disease progression. J. Clin. Oncol. 2011; 29 (22): 3037-3043.

43. Blackford A., Serrano O. K., Wolfgang C. L. et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin. Cancer Res. 2009; 15 (14): 4674-І679.

44. Casey G., Yamanaka Y., Friess H. et al. p53 mutations are common in pancreatic cancer and are absent in chronic pancreatitis. Cancer Lett. 1993; 69 (3): 151-160.

45. Polyak K., Xia Y., Zweier J. L. et al. A model for p53-induced apoptosis. Nature. 1997; 389 (6648): 300-305.

46. Izetti P., Hautefeuille A., Abujamra A. L. et al. PRIMA-1, a mutant p53 reactivator, induces apoptosis and enhances chemotherapeutic cytotoxicity in pancreatic cancer cell lines. Invest. New Drugs. 2014; 32 (5): 783-794.

47. Azmi A. S., Philip P. A., Wang 1. et al. Reactivation of p53 by novel MDM2 inhibitors: implications for pancreatic cancer therapy. Curr. Cancer Drug Targets. 2010; 10 (3): 319.

48. Liggett W., Sidransky D. Role of the p16 tumor suppressor gene in cancer. J. Clin. Oncol. 1998; 16 (3): 1197-1206.

49. Stott F. J., Bates S., James M. C. et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 1998; 17 (17): 5001-5014.

50. Caldas C., Hahn S. A., da Costa L. T., et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS 1) gene in pancreatic adenocarcinoma. Nature Genet. 1994; 8 (1): 27-32.

51. Schutte M., Hruban R. H., Geradts J. et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res. 1997; 57 (15): 3126-3130.

52. Heilmann A. M., Perera R. M., Ecker V. et al. CDK4/6 and IGF1 receptor inhibitors synergize to suppress the growth of p16IN-K4A-deficientpancreatic cancers. Cancer Res. 2014; 74 (14): 3947-3958.

53. Liu F., Korc M. Cdk4/6 Inhibition induces epithelial-mesenchymal transition and enhances invasiveness in pancreatic cancer cells. Mol. Cancer Ther. 2012; 11 (10): 2138-2148.

54. Finn R. S., Crown J. P., Lang I. et al. The cyclindependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER 2-negative, advanced breast cancer (PALOMA-1/ TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015; 16 (1): 25-35.

55. Allenspach E. J., Maillard I., Aster J. C., Pear W. S. Notch signaling in cancer. Cancer Biol. Ther. 2002; 1 (5): 466-476.

56. Ranganathan P., Weaver K. L., Capobianco A.J. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat. Rev. Cancer. 2011; 11 (5): 338-351.

57. Andersson E. R., Lendahl U. Therapeutic modulation of Notch signalling - Are we there yet? Nat. Rev. Drug. D'iscov. 2014; 13 (5): 357-378.

58. Lee J. Y., Song S. Y., Park J. Y. Notch pathway activation is associated with pancreatic cancer treatment failure. Pancreatology 2014; 14 (1): 48-53.

59. Waddell N., Pajic M., Patch A. M. et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015; 518 (7540): 495-501.

60. Hiraoka N., Onozato K., Kosuge T., Hirohashi S. Prevalence of FOXP3 + regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin. Cancer Res. 2006; 12 (18): 5423-5434.

61. Ikemoto T., Yamaguchi T., Morine Y. et al. Clinical roles of increased populations of Foxp3+CD4+T cells in peripheral blood from advanced pancreatic cancer patients. Pancreas 2006; 33 (4): 386-390.

62. Yamagiwa S., Gray J. D., Hashimoto S., Horwitz D. A. A role for TGF-beta in the gen f Медицинский алфавит № 9 / 2017, том № 1 Практическая гастроэнтерология e-mail: medalfavit@mail.ru eration and expansion of CD4+CD25 + regulatory T cells from human peripheral blood. J. Immunol. 2001; 166 (12): 7282-7289.

63. Blauenstein U. W. On the effects of moderate hypothermia on the acid base and electrolyte ratio in cerebrospinal fluid and arterial blood. Anaesthesist 1965; 14 (12): 361-366.

64. Clark C. E., Hingorani S. R., Mick R. et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 2007; 67 (19): 9518-9527.

65. Davis M., Conlon K., Bohac G. C. et al. Effect of pemetrexed on innate immune killer cells and adaptive immune Tcells in subjects with adenocarcinoma of the pancreas. J. Immunother. 2012; 35 (8): 629-640.

66. Kurahara H., Shinchi H., Mataki Y. et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J. Surg. Res. 2011; 167 (2): e211-219.

67. Rucki A. A., Zheng L. Pancreatic cancer stroma: understanding biology leads to new therapeutic strategies. World J. Gastroenter ol. 2014; 20 (9): 2237-2246.

68. Farrow B., Albo D., Berger D.H. The role of the tumor microenvironment in the progression of pancreatic cancer. J. Surg. Res. 2008; 149: 319-328.

69. Lewin C. S., Allen R. A., Amyes S. G. Mechanisms of zidovudine resistance in bacteria. J. Med. Microbiol. 1990; 33: 235-238.

70. Waghray M., Yalamanchili M., di Magliano M. P., Simeone D. M. Deciphering the role of stroma in pancreatic cancer. Curr. Opin. Gastroenterol. 2013; 29: 537-543.

71. Feig C., Gopinathan A., Neesse A. et al. The pancreas cancer microenvironment. Clin. Cancer Res. 2012; 18: 4266-4276.

72. Erkan M., Michalski C. W., Rieder S. et al. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin. Gastroenterol. Hepatol. 2008; 6: 1155-1161.

73. Olive K. P., Jacobetz M. A., Davidson C. J. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009; 324: 1457-1461.

74. Beatty G. L., Chiorean E. G., Fishman M. P. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011; 331: 1612-1616.

75. Heinemann V., Reni M., Ychou M. et al. Tumour-stroma interactions in pancreatic ductal adenocarcinoma: rationale and current evidence for new therapeutic strategies. Cancer Treat. Rev. 2014; 40: 118-128.

76. Burris H.A., Moore M.J., Andersen J. et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 1997; 15: 2403-2413.

77. Brahmer J. R., Tykodi S.S., Chow L. Q. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012; 366 (26): 2455-2465.

78. Beatty G. L., Chiorean E. G., Fishman M. P. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011; 331 (6024): 1612-1616.

79. Vonderheide R. H., Bajor D. L., Winograd R. et al. CD40 immunotherapy for pancreatic cancer. Cancer Immunol. Immunother. 2013; 62 (5): 949-954.

80. Григорьева И. Н., Романова Т. И., Суворова Т. С., Тов Н.Л. Особенности клинической симптоматики и некоторых биохимических маркеров у больных раком поджелудочной железы. РЖГГК 2015; том XXV, № 5 (прил. 46): № 500 (С. 136).

81. Григорьева И. Н., Романова Т. И., Ефимова О. В., Суворова Т. С., Тов Н.Л. Оценка суточного рациона питания больных раком поджелудочной железы. Гастроэнтерология Санкт-Петербурга2016; № 1-2: с. М9-М10. № 27.

82. Григорьева И. Н., Романова Т. И., Ефимова О. В., Суворова Т. С., Тов Н. Л. Качество жизни у больных с различной патологией поджелудочной железы. Гастроэнтерология Санкт-Петербурга 2016; № 1-2: с. М10. № 28.

83. Григорьева И. Н., Романова Т. И., Максимов В. Н., Суворова Т. С., Тов Н. Л. Полиморфизм гена ТР53 у больных раком поджелудочной железы. РЖГГК 2015; том XXV, № 5 (прил. 46): № 192 (с. 53).

84. Григорьева И. Н., Романова Т. И., Ефимова О. В., Максимов В. Н., Тов Н. Л. Уровни провоспалительных цитокинов и полиморфизм гена ТР53 у больных РПЖ. Гастроэнтерология Санкт-Петербурга 2016; № 1-2: с. М9. № 26.


Рецензия

Для цитирования:


Романова Т.И., Григорьева И.Н., Ефимова О.В. Рак поджелудочной железы: повреждения генома и возможности персонализированной медицины. Медицинский алфавит. 2017;1(9):34-39.

For citation:


Romanova T.I., Grigoryeva I.N., Efimova O.V. Pancreatic cancer: genome damage and possibilities of personalized medicine. Medical alphabet. 2017;1(9):34-39. (In Russ.)

Просмотров: 281


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)