Preview

Medical alphabet

Advanced search

Metabolomic predictors of non-response to methotrexate therapy in patients with rheumatoid arthritis

https://doi.org/10.33667/2078-5631-2025-32-49-54

Abstract

Aim. To identify a group of metabolites potentially characterizing the lack of response to initiated therapy with disease-modifying antirheumatic drugs (methotrexate) after 24 weeks, based on an analysis of the relationship between activity parameters and the baseline metabolic profile.

Material and methods. The study group included 37 patients with RA [age 57.51 [52.63–62.40] years, 12 men (32.4 %)] who were initiated on methotrexate (MTX) therapy; the control group included 31 healthy volunteers [age 41.00 [30.00–44.00] years, 11 men (35.5 %)]. Plasma metabolites of the study participants were analyzed using ultra-high-performance liquid chromatography combined with tandem mass spectrometry. Metabolomic profiling of patients in both groups was performed at the time of study inclusion. After 24 weeks of MTX therapy, patients in the main group underwent a follow-up examination to assess treatment efficacy. Treatment response was defined as achieving low disease activity or clinical remission based on the Disease Activity Score (DAS 28-CRP). Based on this, patients in the main group were divided into «responders» and «non-responders».

Results. Metabolite classes that statistically differed significantly between RA patients and healthy volunteers included branched-chain amino acids, tryptophan metabolites, fatty acids, and urea cycle metabolites. After 24 weeks of MTX therapy, 16 patients achieved remission/low activity based on the DAS 28-CRP scale, and 21 patients achieved moderate/high activity. Moreover, patients who responded to MTX treatment had statistically higher DAS 28-CRP activity levels at baseline compared to patients who did not respond to MTX therapy (4.80 [4.40–5.45] vs. 3.99 [3.32–4.98], p=0.006). At baseline, patients in the «responder» and «non-responder» groups were comparable in age (56.27±16.58 and 54.91±11.03 years, respectively, p=0.766) and gender (4 (25.0 %) and 5 (22.7 %) men, respectively, p=1.000). However, among patients who did not respond to MTX therapy, there were more patients seropositive for both rheumatoid factor (RF) [16 (76.2 %) vs. 10 (62.5 %), p<0.05] and anti-citrullinated protein antibodies (ACP) [16 (76.2 %) vs. 8 (50.0 %), p<0.05], and the ACP level was statistically significantly higher compared to the group of patients who responded to therapy (20.00 [10.00; 422.50] vs. 400.00 [100.00; 520.00] U/ml, p=0.001). Using principal component analysis with a reliable assessment of the VIP-score (variable importance in projection), a panel of biomarkers predicting potential lack of response to MTX therapy was generated. The panel included aspartate (p<0.05), glutamate (p<0.05), betaine (p<0.05), dimethylglycine (p<0.05), tryptophan (p<0.05), quinolinic acid (p<0.05), octanoyl-carnitine (p<0.05), decanoyl-carnitine (p<0.05), asymmetric dimethylarginine (p<0.05), and uridine (p<0.05).

Conclusion. The study of the metabolomic profile of patients with RA demonstrates the potential for predicting therapy response, which in the future will serve as the basis for the development of more effective therapeutic strategies and the creation of targeted therapies aimed at metabolic processes.

About the Authors

L. M. Musaeva
I. M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University)
Russian Federation

Musaeva Larisa M., postgraduate at Dept of Hospital Therapy No. 1

Moscow



I. V. Menshikova
I. M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University)
Russian Federation

Menshikova Irina V., Dr Med Sci (habil.), professor ate Dept of Hospital Therapy No. 1, head of Rheumatology Dept at University Clinical Hospital No.1

Moscow



S. A. Appolonova
I. M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University)
Russian Federation

Appolonova Svetlana A., PhD in Chemistry, associate professor at Dept of Pharmacology, head of the Center for Biopharmaceutical Analysis and Metabolomics Research

Moscow



K. M. Shestakova
I. M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University)
Russian Federation

Shestakova Ksenya M., PhD in nanoscience and advanced technologies, head of the Laboratory of Bioinformatics and Pharmacological Modeling

Moscow



References

1. Smolen J. S., Aletaha D., Bijlsma J. W., Breedveld F. C., Boumpas D., Burmester G., Combe B., Cutolo M., de Wit M., Dougados M., Emery P., Gibofsky A., Gomez-Reino J.J., Haraoui B., Kalden J., Keystone E. C., Kvien T. K., McInnes I., Martin-Mola E., Montecucco C., Schoels. M, van der Heijde D., T2T Expert Committee. Treating rheumatoid arthritis to target: recommendations of an international task force. Annals of the rheumatic diseases. 2010; 69 (4): 631–637. DOI: 10.1136/ard.2009.123919

2. Rheumatoid arthritis. Clinical guidelines. Approved by the Ministry of Health of the Russian Federation. 2025. URL: https://cr.minzdrav.gov.ru/preview-cr/250_3 (In Russ.) (access date: 25.11.2025).

3. Smolen J. S., Landewé R. B.M., Bijlsma J. W.J., Burmester G. R., Dougados M., Kerschbaumer A., McInnes I.B., Sepriano A., van Vollenhoven R. F., de Wit M., Aletaha D., Aringer M., Askling J., Balsa A., Boers M., den Broeder A. A., Buch M. H., Buttgereit F., Caporali R., Cardiel M. H., De Cock D., Codreanu C., Cutolo M., Edwards C. J., van Eijk-Hustings Y., Emery P., Finckh A., Gossec L., Gottenberg J. E., Hetland M. L., Huizinga T. W.J., Koloumas M., Li Z., Mariette X., Müller-Ladner U., Mysler E. F., da Silva J. A.P., Poór G., Pope J. E., Rubbert-Roth A., Ruyssen-Witrand A., Saag K. G., Strangfeld A., Takeuchi T., Voshaar M., Westhovens R., van der Heijde D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Annals of the rheumatic diseases. 2020; 79 (6): 685–699. DOI: 10.1136/annrheumdis‑2019-216655

4. Morbidity rate of the entire population of Russia in 2023: statistical materials / Deev I. A., Kobyakova O. S., Starodubov V. I., Alexandrova G. A., Golubev N. A., Oskov Yu.I., Polikarpov A. V., Shelepova E. A. et al. M.: FSBI «CRIIHI» of the Ministry of Health of Russia, 2024. 152 p. (In Russ.).

5. Gordeev A. V., Olyunin Yu.A., Galushko E. A., Zotkin E. G., Lila A. M. Difficult-to-treat rheumatoid arthritis. What is it? Sovremennaya Revmatologiya=Modern Rheumatology Journal. 2021; 15 (5): 7–11. (In Russ.). DOI: 10.14412/1996‑7012‑2021‑5‑7‑11

6. Martinez-Prat L., Nissen M. J., Lamacchia C., Bentow C., Cesana L., Roux-Lombard P., Gabay C., Mahler M. Comparison of serological biomarkers in rheumatoid arthritis and their combination to improve diagnostic performance. Frontiers in immunology. 2018; 9: 1113. DOI: 10.3389/fimmu.2018.01113

7. Madsen R., Lundstedt T., Trygg J. Chemometrics in metabolomics – a review in human disease diagnosis. Analytica chimica acta. 2010; 659 (1–2): 23–33. DOI: 10.1016/j.aca.2009.11.042

8. Li J., Che N., Xu L., Zhang Q., Wang Q., Tan W., Zhang M. LC–MS-based serum metabolomics reveals a distinctive signature in patients with rheumatoid arthritis. Clinical rheumatology. 2018; 37 (6): 1493–1502. DOI: 10.1007/s10067‑018‑4021‑6

9. Musaeva L. M., Menshikova I. V., Appolonova S. A., Shestakova K. M. Metabolomic changes in rheumatoid arthritis: focus on biological disease-modifying antirheumatic drugs. Clinical review for general practice. 2024; 5 (11): 62–69. (In Russ.). DOI: 10.47407/kr2024.5.11.00518

10. Pharmacometabolomics: A new horizon in personalized medicine / Emwas A. H., Szczepski K., McKay R.T., Asfour H., Chang C., Lachowicz J., Jaremko M. Metabolomics – Methodology and Applications in Medical Sciences and Life Sciences / Ed. by Zhan X. Rijeca: IntechOpen, 2021. Ch. 3. URL: https://www.intechopen.com/chapters/77592 (дата обращения: 25.11.2025).

11. Corona G., Rizzolio F., Giordano A., Toffoli G. Pharmaco-metabolomics: an emerging «omics» tool for the personalization of anticancer treatments and identification of new valuable therapeutic targets. Journal of cellular physiology. 2012; 227 (7): 2827–2831. DOI: 10.1002/jcp.24003

12. Kohler I., Hankemeier T., van der Graaf P. H., Knibbe, C.A.J., van Hasselt J. G. C. Integrating clinical metabolomics-based biomarker discovery and clinical pharmacology to enable precision medicine. European journal of pharmaceutical sciences. 2017; 109S: S 15–S 21. DOI: 10.1016/j.ejps.2017.05.018

13. Li C., Chen B., Fang Z., Leng Y. F., Wang D. W., Chen F. Q., Xu X., Sun Z. L. Metabolomics in the development and progression of rheumatoid arthritis: A systematic review. Joint bone spine. 2020; 87 (5): 425–430. DOI: 10.1016/j.jbspin.2020.05.005

14. Musaeva L. M., Menshikova I. V., Appolonova S. A., Shestakova K. M. Metabolomic profiling in patients with rheumatoid arthritis (a pilot study). Clinical review for general practice. 2024; 5 (4): 76–82. (In Russ.). DOI: 10.47407/kr2024.5.4.00422

15. Wirleitner B., Neurauter G., Schröcksnadel K., Frick B., Fuchs D. Interferon-gamma-induced conversion of tryptophan: immunologic and neuropsychiatric aspects. Current medicinal chemistry. 2003; 10 (16): 1581–1591. DOI: 10.2174/0929867033457179

16. Moulin D., Millard M., Taïeb M., Michaudel C., Aucouturier A., Lefèvre A., Bermúdez-Humarán L.G., Langella P., Sereme Y., Wanherdrick K., Gautam P., Mariette X., Dieudé P., Gottenberg J. E., Jouzeau J. Y., Skurnik D., Emond P., Mulleman D., Sellam J., Sokol H. Counteracting tryptophan metabolism alterations as a new therapeutic strategy for rheumatoid arthritis. Annals of the rheumatic diseases. 2024; 83 (3): 312–323. DOI: 10.1136/ard‑2023-224014

17. Tykocinski L. O., Lauffer A. M., Bohnen A., Kaul N. C., Krienke S., Tretter T., Adam I., Mohapatra S. R., Saikali P., Löhning M., Neidhart M., Gay S., Oezen I., Platten M., Opitz C. A., Lorenz H. M. Synovial fibroblasts selectively suppress Th1 cell responses through IDO1-mediated tryptophan catabolism. Journal of immunology. 2017; 198 (8): 3109–3117. DOI: 10.4049/jimmunol.1600600

18. Surdacki A., Martens-Lobenhoffer J., Wloch A., Marewicz E., Rakowski T., Wieczorek-Surdacka E., Dubiel J. S., Pryjma J., Bode-Böger S. M. Elevated plasma asymmetric dimethyl-L-arginine levels are linked to endothelial progenitor cell depletion and carotid atherosclerosis in rheumatoid arthritis. Arthritis and rheumatism. 2007; 56 (3): 809–819. DOI: 10.1002/art.22424

19. Stepanov A. A., Malsagova K. A., Kopylov A. T., Rudnev V. R., Karateev D. E., Markelova, E.I., Luchikhina E. L., Borisova E. E., Kaysheva A. L. Determination of heterogeneous proteomic and metabolomic response in anti-TNF and anti-IL‑6 treatment of patients with rheumatoid arthritis. Life (Basel). 2023; 13 (2): 596. Published 2023 Feb 20. DOI: 10.3390/life13020596

20. Dambrova M., Makrecka-Kuka M., Kuka J., Vilskersts R., Nordberg D., Attwood M. M., Smesny S., Sen Z. D., Guo A. C., Oler E., Tian S., Zheng J., Wishart D. S., Liepinsh E., Schiöth H. B. Acylcarnitines: nomenclature, biomarkers, therapeutic potential, drug targets, and clinical trials. Pharmacological reviews. 2022; 74 (3): 506–551. DOI: 10.1124/pharmrev.121.000408

21. Musaeva L. M., Menshikova I. V., Appolonova S. A., Shestakova K. M., Belenkov Yu. N. Сomparative analysis of tryptophan and downstream metabolites in patients with rheumatoid arthritis and healthy controls. Medical & pharmaceutical journal «Pulse». 2025; 27 (8): 82–88/ (In Russ.). DOI: 10.26787/nydha‑2686‑6838‑2025‑27‑8‑82‑88


Review

For citations:


Musaeva L.M., Menshikova I.V., Appolonova S.A., Shestakova K.M. Metabolomic predictors of non-response to methotrexate therapy in patients with rheumatoid arthritis. Medical alphabet. 2025;(32):49-54. (In Russ.) https://doi.org/10.33667/2078-5631-2025-32-49-54

Views: 26


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)