Preview

Medical alphabet

Advanced search

Epilepsy associated with multiple sclerosis (сurrent state of the problem)

https://doi.org/10.33667/2078-5631-2025-32-30-34

Abstract

This article provides an overview of the current state of the problem regarding the comorbidity of multiple sclerosis (MS) and epileptic seizures (ES). Epilepsy occurs in patients with MS 3–6 times more often than in the general population; however, its prevalence and clinical manifestations are variable. The pathogenetic link between the two conditions is bidirectional: demyelination and gray matter atrophy in MS contribute to epileptogenesis, while epileptic activity itself can exacerbate neurodegeneration. The clinical manifestations of ES in MS are heterogeneous and can include both focal and generalized seizures, which often serve as the first manifestation of the demyelinating disease. Electroencephalography and cerebral magnetic-resonance imaging play a crucial role in diagnosis, revealing focal activity and structural changes in the cortex. Treatment requires a comprehensive approach, whereby some disease-modifying therapies for MS and antiepileptic drugs can have a mutually positive influence. Conclusion. The comorbidity of multiple sclerosis and epilepsy is a complex problem due to shared pathogenetic mechanisms and mutual aggravating influence. Diagnosing epileptic seizures in MS can be challenging due to the variable clinical picture and non-specific changes on electroencephalogram. Given the high risk of developing epilepsy in this patient category and its potential impact on the progression of disability, neurologists need to maintain a high index of diagnostic suspicion. Further research in this area should be devoted to optimal treatment strategies aimed at both conditions simultaneously.

About the Authors

A. V. Vasilenko
Almazov National Medical Research Centre, Saint Petersburg; North-Western State Medical University named after I. I. Mechnikov
Russian Federation

Vasilenko Anna V., PhD Med, head of teaching unit, associate professor at Neurosurgery Dept; associate professor at Neurology Dept named after academician S. V. Davidenkov

Saint Petersburg



V. E. Druzhinina
Almazov National Medical Research Centre; North-Western State Medical University named after I. I. Mechnikov
Russian Federation

Druzhinina Valeriya E., postgraduate student at Neurosurgery Dept; resident at Neurology Dept named after academician S. V. Davidenkov

Saint Petersburg



V. V. Goldobin
North-Western State Medical University named after I. I. Mechnikov
Russian Federation

Goldobin Vitaly V., Dr Med Sci (habil.), professor, head of Dept of Neurology named after academician S. N. Davidenkov2, member of the Association of Neurologists of St. Petersburg and the Leningrad Region, European Academy of Neurology

Saint Petersburg



References

1. Ghezzi A, Montanini R, Basso PF. et al. Epilepsy in multiple sclerosis. Eur Neurol. 1990; 30 (4): 218–23.

2. Langenbruch L, Krämer J, Güler S. et al. Seizures and epilepsy in multiple sclerosis: epidemiology and prognosis in a large tertiary referral center. J Neurol. 2019 Jul; 266 (7): 1789–1795.

3. Vasilenko A. V., Fomintseva M. V. Demyelination, epilepticism, andparoxysmality. In: Multiple sclerosis. Continuation of the exercise. Moscow: MEDpress-inform, 2021: 101–124 р. (In Russ.).

4. Striano P, Orefice G, Brescia Morra V. et al. Epileptic seizures in multiple sclerosis: clinical and EEG correlations. Neurol Sci. 2003 Dec; 24 (5): 322–8.

5. Catenoix H., Marignier R., Ritleng C. et al. Multiple sclerosis and epileptic seizures. Mult. Scler. J. 2010; 17: 96–102.

6. Mirmosayyeb O, Shaygannejad V, Nehzat N. et al. Prevalence of Seizure/Epilepsy in Patients with Multiple Sclerosis: A Systematic Review and Meta-Analysis. Int J Prev Med. 2021 Feb 24; 12: 14.

7. Bitsch A, Schuchardt J, Bunkowski S. et al. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain. 2000 Jun; 123 (Pt 6): 1174–83.

8. Brück W. The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J Neurol. 2005 Nov; 252 Suppl 5: 3–9.

9. Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. 2008; 31: 247–69.

10. Frischer JM, Bramow S, Dal-Bianco A. et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009 May; 132 (Pt 5): 1175–89.

11. Zong B, Yu F, Zhang X. et al. Mechanisms underlying the beneficial effects of physical exercise on multiple sclerosis: focus on immune cells. Front Immunol. 2023 Sep 29; 14: 1260663.

12. Zuroff L, Rezk A, Shinoda K. et al. Immune aging in multiple sclerosis is characterized by abnormal CD 4 T cell activation and increased frequencies of cytotoxic CD 4 T cells with advancing age. EBioMedicine. 2022; 82: 104179.

13. Bronge M, Ruhrmann S, Carvalho-Queiroz C. et al. Myelin oligodendrocyte glycoprotein revisited-sensitive detection of MOG-specific T-cells in multiple sclerosis. J. Autoimmun. 2019; 102: 38–49.

14. Dong C. Cytokine Regulation and Function in T Cells. Annu Rev Immunol. 2021 Apr 26; 39: 51–76.

15. Scheinecker C, Goschl L, Bonelli M. Treg cells in health and autoimmune diseases: New insights from single cell analysis. J. Autoimmun. 2020; 110: 102376.

16. Aydin S, Pareja J, Schallenberg VM. et al. Antigen recognition detains CD 8(+) T cells at the blood-brain barrier and contributes to its breakdown. NatCommun. 2023; 14 (1): 3106.

17. Huber M, Heink S, Pagenstecher A. et al. IL‑17A secretion by CD 8+ T cells supports Th17-mediated autoimmune encephalomyelitis. J. Clin Invest. 2013; 123 (1): 247–60.

18. Kirby L, Jin J, Cardona JG. et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. NatCommun. 2019; 10 (1): 3887.

19. Sauer BM, Schmalstieg WF, Howe CL. Axons are injured by antigen-specific CD 8(+) T cells through a MHC class I- and granzyme B-dependent mechanism. NeurobiolDis. 2013; 59: 194–205.

20. Jelcic I, Al Nimer F, Wang J. et al. Memory B cells activate brain-homing, autoreactive CD 4(+) T cells in multiple sclerosis. Cell. 2018; 175 (1): 85–100 e23.

21. Bar-Or A, Fawaz L, Fan B. et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol. 2010 Apr; 67 (4): 452–61.

22. Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol. 2018; 19 (7): 696–707. 23. Wlodarczyk A, Løbner M, Cédile O. et al. Comparison of microglia and infiltrating CD 11ccells as antigen presenting cells for T cell proliferation and cytokine response. J Neuroinflammation. 2014 Mar 25; 11: 57.

23. Reizis B. Plasmacytoid dendritic cells: development, regulation, and function. Immunity. 2019; 50 (1): 37–50.

24. Funes SC, Rios M, Escobar-Vera J. et al. Implications of macrophage polarization in autoimmunity. Immunology. 2018; 154 (2): 186–95.

25. Correale J, Gaitán MI, Ysrraelit MC. et al. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain. 2017 Mar 1;140 (3): 527–546.

26. Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol. 2012 Nov 5; 8 (11): 647–56.

27. Correale J. The role of microglial activation in disease progression. MultScler. 2014; 20: 1288–95.

28. Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte Crosstalk in CNS Inflammation. Neuron. 2020 Nov 25; 108 (4): 608–622.

29. Lu F, Selak M, O'Connor J. et al. Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci. 2000 Aug 15; 177 (2): 95–103.

30. Veto S, Acs P, Bauer J. et al. Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death. Brain. 2010 Mar; 133 (Pt 3): 822–34.

31. Craelius W, Migdal MW, Luessenhop CP. et al. Iron deposits surrounding multiple sclerosis plaques. ArchPathol Lab Med. 1982 Aug; 106 (8): 397–9.

32. Bagnato F, Hametner S, Yao B. et al. Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla. Brain. 2011 Dec; 134 (Pt 12): 3602–15.

33. Haider L. Inflammation, Iron, Energy Failure, and Oxidative Stress in the Pathogenesis of Multiple Sclerosis. Oxid Med Cell Longev. 2015; 2015: 725370.

34. Hametner S., Wimmer I., Haider L. et al. Iron and neurodegeneration in the multiple sclerosis brain. Annals of Neurology. 2013; 74 (6): 848–861.

35. Vasilenko А. V., Ulitin А. Yu., Onishchenko L. S. et al. Postinfectious epilepsy: clinical and diagnostical features. Epilepsy and paroxysmal conditions. 2024; 16 (1): 18–32. (In Russ.).

36. Lobzin S. V., Odinak M. M., Dyskin D. E. et al. Oxidativestressanditssignificancein the etiopathogenesis of locally caused epilepsy. Bulletin of the Russian Military Medical Academy. 2010; 3: 250–3. (In Russ.).

37. Lipatova L. V., Dubinina E. E., Alekseeva D. V. et al. The role of oxidativestressin the pathogenesis of epilepsy. Siberian Medical Review. 2017; 1: 11–16. (In Russ.).

38. Tibekina L. M., Charyeva G. Sh., Kushnirenko Ya. N. Oxidative stress and itsrolein the course of epilepsy. Literature review. Bulletin of St. Petersburg University. Medicine. 2024; 19 (1): 28–44. (In Russ.).

39. Moreau T, Sochurkova D, Lemesle M. et al. Epilepsy in patients with multiple sclerosis: radiological-clinical correlations. Epilepsia. 1998 Aug; 39 (8): 893–6.

40. Sokic DV, Stojsavljevic N, Drulovic J. et al. Seizures in multiple sclerosis. Epilepsia. 2001 Jan; 42 (1): 72–9.

41. van Munster CE, Jonkman LE, Weinstein HC. et al. Gray matter damage in multiple sclerosis: Impact on clinical symptoms. Neuroscience. 2015 Sep 10; 303: 446–61.

42. Calabrese M, Grossi P, Favaretto A. et al. Cortical pathology in multiple sclerosis patients with epilepsy: a 3 year longitudinal study. J Neurol Neurosurg Psychiatry. 2012 Jan; 83 (1): 49–54.

43. Chen J, Ngo A, Rodríguez-Cruces R. et al. A worldwide enigma study on epilepsy-related gray and white matter compromise across the adult lifespan. bioRxiv [Preprint]. 2024 Mar 6:2024.03.02.583073. DOI: 10.1101/2024.03.02.583073

44. Xie Z, Chen Z, Jiang Y. et al. Causal relationships between epilepsy and the microstructure of the white matter: A Mendelian randomization study. Medicine (Baltimore). 2024 Nov 1; 103 (44): e40090.

45. Hatton SN, Huynh KH, Bonilha L. et al. White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study. Brain. 2020 Aug 1; 143 (8): 2454–2473.

46. Hu X., Wang J.-Y., Gu R. et al. The relationship between the occurrence of intractable epilepsy with glial cells and myelin sheath – An experimental study. Eur. Rev. Med. Pharmacol. Sci. 2016; 20: 4516–4524.

47. You Y., Bai H., Wang C. et al. Myelin damage of hippocampus and cerebral cortex in rat pentylenetetrazol model. Brain Res. 2011; 1381: 208–216.

48. Rayatpour A, Farhangi S, Verdaguer E. et al. The Cross Talk between Underlying Mechanisms of Multiple Sclerosis and Epilepsy May Provide New Insights for More Efficient Therapies. Pharmaceuticals (Basel). 2021 Oct 11; 14 (10): 1031.

49. Allen AN, Seminog OO, Goldacre MJ. Association between multiple sclerosis and epilepsy: large population-based record-linkage studies. BMC Neurol. 2013 Dec 4; 13: 189.

50. Burman J, Zelano J. Epilepsy in multiple sclerosis: A nationwide population-based register study. Neurology. 2017 Dec 12; 89 (24): 2462–2468.

51. Grothe M, Ellenberger D, von Podewils F. et al. Epilepsy as a predictor of disease progression in multiple sclerosis. MultScler. 2022 May; 28 (6): 942–949.

52. Mahamud Z, Burman J, Zelano J. Prognostic impact of epilepsy in multiple sclerosis. MultSclerRelatDisord. 2020 Feb; 38: 101497.

53. Benjaminsen E, Myhr KM, Alstadhaug KB. The prevalence and characteristics of epilepsy in patients with multiple sclerosis in Nordland county, Norway. Seizure. 2017 Nov; 52: 131–135.

54. Schorner A, Weissert R. Patients with Epileptic Seizures and Multiple Sclerosis in a Multiple Sclerosis Center in Southern Germany Between 2003–2015. Front Neurol. 2019 Jun 6; 10: 613.

55. Kinnunen E, Wikström J. Prevalence and prognosis of epilepsy in patients with multiple sclerosis. Epilepsia. 1986 Nov-Dec; 27 (6): 729–33.

56. Ghezzi A, Montanini R, Basso PF, Zaffaroni M, Massimo E, Cazzullo CL. Epilepsy in multiple sclerosis. Eur Neurol. 1990; 30 (4): 218–23.

57. Striano P, Orefice G, Brescia Morra V. et al. Epileptic seizures in multiple sclerosis: clinical and EEG correlations. Neurol Sci. 2003 Dec; 24 (5): 322–8.

58. Catenoix H., Marignier R., Ritleng C. et al. Multiple sclerosis and epileptic seizures. Mult. Scler. J. 2010; 17: 96–102.

59. Shaygannejad V, Ashtari F, Zare M. et al. Seizure characteristics in multiple sclerosis patients. J Res Med Sci. 2013 Mar; 18 (Suppl 1): S 74–7.

60. Etemadifar M, Abtahi SH, Tabrizi N. Epileptic seizures in early-onset multiple sclerosis. Arch Iran Med. 2012 Jun; 15 (6): 381–3.

61. Vasilenko A. V., Druzhinina V. E., Sebelev K. I. et al. Occipital-lobe epilepsy associated with intraparenchymal schwannoma in the occipital lobe: a modern perspective on the problem. Russian neurosurgical journal named after professor A. L. Polenov. 2024; XVI (2): 138–149. (In Russ.). DOI: 10.56618/2071-2693_2024_16_2_138

62. Uribe-San-Martín R, Ciampi-Díaz E, Suarez-Hernández F. et al. Prevalence of epilepsy in a cohort of patients with multiple sclerosis. Seizure. 2014 Jan; 23 (1): 81–3.

63. Martínez-Lapiscina EH, Ayuso T, Lacruz F. et al. Cortico-juxtacortical involvement increases risk of epileptic seizures in multiple sclerosis. Acta Neurol Scand. 2013 Jul; 128 (1): 24–31.

64. Thompson A, Kermode AG, Moseley IF. et al. Seizures due to multiple sclerosis: Seven patients with MRI correlations. J. Neurol. Neurosurg. Psychiatry. 1993; 56: 1317–1320.

65. You Y, Zhao Y, Bai H. et al. Glatiramer acetate, an anti-demyelination drug, reduced rats’ epileptic seizures induced by pentylenetetrazol via protection of myelin sheath. Eur. J. Pharm. Sci. 2013; 49: 366–370.

66. Yazdi A, Baharvand H, Javan M. Enhanced remyelination following lysolecithin-induced demyelination in mice under treatment with fingolimod (FTY 720) Neuroscience. 2015; 311: 34–44.

67. Gol M, Ghorbanian D, Hassanzadeh S. et al. Fingolimod enhances myelin repair of hippocampus in pentylenetetrazol-induced kindling model. Eur. J. Pharm. Sci. 2017; 96: 72–83.

68. Sotgiu S, Murrighile MR, Constantin G. Treatment of refractory epilepsy with natalizumab in a patient with multiple sclerosis. Case report. BMC Neurol. 2010; 10: 84.

69. Lv J, Du C, Wei W. et al. The Antiepileptic Drug Valproic Acid Restores T Cell Homeostasis and Ameliorates Pathogenesis of Experimental Autoimmune Encephalomyelitis. J. Biol. Chem. 2012; 287: 28656–28665.

70. Lo AC, Saab CY, Black JA. et al. Phenytoin Protects Spinal Cord Axons and Preserves Axonal Conduction and Neurological Function in a Model of Neuroinflammation In Vivo. J. Neurophysiol. 2003; 90: 3566–3571.

71. Raftopoulos R, Hickman SJ, Toosy A. et al. Phenytoin for neuroprotection in patients with acute optic neuritis: A randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016; 15: 259–269.

72. Solaro C, Brichetto G, Battaglia MA. et al. Antiepileptic medications in multiple sclerosis: Adverse effects in a three-year follow-up study. Neurol. Sci. 2005; 25: 307–310.

73. Noorbakhsh F, Baker GB, Power C. Allopregnanolone and neuroinflammation: A focus on multiple sclerosis. Front. Cell. Neurosci. 2014; 8: 134.

74. Meletti S, Lucchi C, Monti G. et al. Decreased allopregnanolone levels in cerebrospinal fluid obtained during status epilepticus. Epilepsia. 2017; 58: e16–e20.

75. Lévesque M., Biagini G., Avoli M. Neurosteroids and focal epileptic disorders. Int. J. Mol. Sci. 2020; 21: 9391.


Review

For citations:


Vasilenko A.V., Druzhinina V.E., Goldobin V.V. Epilepsy associated with multiple sclerosis (сurrent state of the problem). Medical alphabet. 2025;(32):30‑34. (In Russ.) https://doi.org/10.33667/2078-5631-2025-32-30-34

Views: 31


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)