Clinical significance of vitamin B 12 deficiency in the development of cognitive impairment in patients with a combination of atrial fibrillation and coronary artery disease on dual antithrombotic therapy
https://doi.org/10.33667/2078-5631-2025-36-30-36
Abstract
Atrial fibrillation (AF) and coronary artery disease (CAD) are independent risk factors for cognitive impairment (CI). Vitamin B 12 deficiency is considered a potentially reversible factor for cognitive decline, but the available literature data are contradictory.
Objective. To assess the impact of vitamin B 12 deficiency on cognitive function in patients with AF and CAD on dual antithrombotic therapy (DATT).
Materials and methods. This prospective open cohort study included 126 patients with AF and CAD (mean age 69.5 [63; 76] years, 62.7 % men) on DATT. They were divided into two groups: with vitamin B 12 deficiency (n=21) and without deficiency (n=105). All patients underwent cognitive assessment using the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), the Trail Making Test, Word fluency test, Word-List Recall, and Stroop color-word conflict. Levels of anxiety and depression were also assessed using the Beck Anxiety Inventory and the Hamilton Rating Scale for Depression, respectively.
Results. In the vitamin B 12 deficient group, the completion time for the third part of the Stroop Test was statistically significantly longer (205.0 [176.8; 248.0] s vs. 180.0 [148.0; 222.3] s, respectively; p=0.048). The difference remained statistically significant after excluding patients with anemia (p=0.049). According to the MMSE, the group without vitamin B 12 deficiency and anemia had a statistically significantly higher number of patients with normal scores (29–30 points) – 15 patients (18 %), whereas there were no such patients in the vitamin B 12 deficient group (p=0.037 between groups).
Conclusions. In patients with AF and CAD on DATT, vitamin B 12 deficiency is a modifiable risk factor for CI and is associated with selective executive dysfunction. Its early diagnosis may help improve cognitive function and quality of life.
About the Authors
S. S. TelkovaRussian Federation
Telkova Svetlana S., assistant, senior laboratory assistant, graduate student at Dept of Therapy and Polymorbid Pathology named after academician M. S. Vovsi
Moscow
A. I. Kochetkov
Russian Federation
Kochetkov Alexey I., PhD Med, associate professor at Dept of Therapy and Polymorbid Pathology named after Academician M. S. Vovsi
Moscow
O. D. Ostroumova
Russian Federation
Ostroumova Olga D., DM Sci (habil.), professo, head of Dept of Therapy and Polymorbid Pathology named after Academician M. S. Vovsi, professor at Dept of Clinical Pharmacology and Propaedeutics of Internal Diseases
Moscow
N. E. Gavrilov
Russian Federation
Gavrilova Natalia E., DM Sci (habil.), professor at Dept of Therapy and Polymorbid Pathology named after Academician M. S. Vovsi, general director, chief physician
Moscow
A. V. Starodubova
Russian Federation
Starodubova Antonina V., DM Sci (habil.), professor, deputy director for Scientific and Therapeutic Work, head of Dept of Faculty Therapy of the Dept of general medicine
Moscow
T. N. Korotkova
Russian Federation
Korotkova Tatiana N., PhD Med, head of Dept of the Laboratory of Clinical Biochemistry, Allergology and Immunology
Moscow
I. V. Vorozhko
Russian Federation
Vorozhko Ilya V., PhD Med, senior research at the Laboratory of Clinical Biochemistry, Allergology and Immunology
Moscow
N. V. Orlova
Russian Federation
Orlova Natalya V., DM Sci (habil.), professor at Dept of Pediatric Therapy, Faculty of Pediatrics
Moscow
References
1. Di Carlo A., Baldereschi M., Amaducci L. et al. Cognitive impairment without dementia in older people: prevalence, vascular risk factors, impact on disability. The Italian Longitudinal Study on Aging. J Am Geriatr Soc. 2000; 48 (7): 775–782. https://doi.org/10.1111/j.1532-5415.2000.tb04752.x
2. Gonzalez-Gross M., Marcos Ascension, Pietrzik K. Nutrition and cognitive impairment in the elderly. Br J Nutr. 2001; 86 (3): 313–21. https://doi.org/10.1079/bjn2001388
3. Zakharov V. V. All-Russian program for the study of the epidemiology and therapy of cognitive disorders in the elderly («Prometheus»). Neurological Journal. 2006; (11): 27–32. (In Russ.).
4. Agarwal R., Chhillar N., Khushwaha S. et al. Role of vitamin B 12, folate and thyroid stimulating hormone in dementia: A hospital-based study in north Indian population. Ann Indian Acad Neurol. 2010; 13 (4): 257–62. https://doi.org/10.4103/0972-2327.74193
5. Wolf P. A., Abbott R. D., Kannel W. B. Atrial fibrillation: a major contributor to stroke in the elderly: The Framingham Study. Arch Intern Med. 1987; 147 (9): 1561–1564. https://doi.org/10.1001/archinte.1987.00370090041008
6. Leys D., Hénon H., Mackowiak-Cordoliani M.A., Pasquier F. Poststroke dementia. Lancet Neurol. 2005; 4 (11): 752–759. https://doi.org/10.1016/S1474–4422(05)70221-0
7. Kwok C. S., Loke Y. K., Hale R. et al. Atrial fibrillation and incidence of dementia: a systematic review and meta-analysis. Neurology. 2011; 76 (10): 914–922. https://doi.org/10.1212/WNL.0b013e31820f2e38
8. Udompanich S., Lip G.Y, Apostolakis S., Lane D. A. Atrial fibrillation as a risk factor for cognitive impairment: a semi-systematic review. QJM. 2013; 106(9): 795–802. https://doi.org/10.1093/qjmed/hct129
9. Kalantarian S., Ay H., Gollub R. L. et al. Association between atrial fibrillation and silent cerebral infarctions: a systematic review and meta-analysis. Ann Intern Med. 2014; 161 (9): 650–658. https://doi.org/10.7326/M14-0538
10. Wolters F. J., Segufa R. A., Darweesh S. K.L. et al. Coronary heart disease, heart failure, and the risk of dementia: A systematic review and meta-analysis. Alzheimer’s Dementia. 2018; 14 (11): 1493–1504. https://doi.org/10.1016/j.jalz.2018.01.007
11. Zhao E., Lowres N., Woolaston A. et al. Prevalence and patterns of cognitive impairment in acute coronary syndrome patients: A systematic review. Eur J Prev Cardiol. 2020; 27 (3): 284–293. https://doi.org/10.1177/2047487319878945
12. Gu S. Z., Beska B., Chan D. et al. Cognitive decline in older patients with Non-ST elevation acute coronary syndrome. J Am Heart Assoc. 2019; 8 (4): e011218. https://doi.org/10.1161/JAHA.118.011218
13. Michniewicz E., Mlodawska E., Lopatowska P. et al. Patients with atrial fibrillation and coronary artery disease – Double trouble. Adv Med Sci. 2018; 63 (1): 30–35. https://doi.org/10.1016/j.advms.2017.06.005
14. Soliman E. Z., Safford M. M., Muntner P. et al. Atrial fibrillation and the risk of myocardial infarction. JAMA Intern Med. 2014; 174 (1): 107–114. https://doi.org/10.1001/jamaint-ernmed.2013.11912
15. Livingston G., Huntley J., Sommerlad A. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020; 396 (10248): 413–46. https://doi.org/10.1016/S0140-6736(20)30367-6
16. Norton S., Matthews F. E., Barnes D. E. et al. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014; 13 (8): 788–794. https://doi.org/10.1016/S1474-4422(14)70136-X
17. Clarke R., Grimley Evans J., Schneede J. et al. Vitamin B 12 and folate deficiency in later life. Age Ageing. 2004; 33 (1): 34–41. https://doi.org/10.1093/ageing/afg109
18. Nilsson-Ehle H., Jagenburg R., Landahl S. et al. Serum cobalamins in the elderly: a longitudinal study of a representative population sample from age 70 to 81. Eur J Haematol. 1991; 47 (1): 10–16. https://doi.org/10.1111/j.1600-0609.1991.tb00555.x
19. Vinueza Veloz A. F., Carpio Arias T. V., Vargas Mejía J. S. et al. Cognitive function and vitamin B 12 and D among community-dwelling elders: A cross-sectional study. Clin Nutr ESPEN. 2022; 50: 270–276. https://doi.org/10.1016/j.clnesp.2022.05.004
20. Shen L., Ji H. F. Associations between homocysteine, folic acid, vitamin b12 and Alzheimer’s disease: Insights from meta-analyses. J. Alzheimers Dis. 2015; 46 (3): 777–790. https://doi.org/10.3233/JAD-150140
21. An Y., Feng L., Zhang X. et al. Dietary intakes and biomarker patterns of folate, vitamin b6, and vitamin b12 can be associated with cognitive impairment by hypermethylation of redox-related genes nudt15 and txnrd1. Clin. Epigenet. 2019; 11 (1): 139. https://doi.org/10.1186/s13148-019-0741-y
22. Telkova S. S., Kochetkov A. I., Starodubova A. V., Korotkova T. N., Vorozhko I. V., Plotnikova N. A., Gavrilova N. E., Ostroumova O. D. Assessment of prevalence of anemia and iron deficiency in patients with atrial fibrillation receiving dual antiplatelet therapy. Russian Medical Inquiry. 2025; 9 (1): 5–11. (In Russ.). https://doi.org/10.32364/2587-6821-2025-9-1-1
23. Vitamin B 12 deficiency anemia. Clinical guidelines. Ministry of Health of the Russian Federation, 2024. URL: https://cr.minzdrav.gov.ru/preview-cr/536_3 (access date: 16.10.25). (In Russ.).
24. Folstein M. F., Folstein S. E., McHugh P.R. «Mini-mental state». A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975; 12 (3): 189–198. https://doi.org/10.1016/0022–3956 (75) 90026-6
25. Nasreddine Z. S., Phillips N. A., Bédirian V. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment J Am Geriatr Soc. 2005; 53 (4): 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
26. Reitan R. Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills. 1958; 8 (3): 271–276. https://doi.org/10.2466/pms.1958.8.3.271
27. Strauss E., Sherman E. M.S., Spreen O. A compendium of neuropsychological tests: Administration, Norms, and Commentary – 3d edition. Oxford: Oxford University Press. 2006; 1240.
28. Morris J. C., Heyman A., Mohs R. C. et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology. 1989; 39 (9): 1159–1165. https://doi.org/10.1212/wnl.39.9.1159
29. MacLeod C. M. Half a century of research on the Stroop effect: an integrative review. Psychol Bull. 1991; 109 (2): 163–203. https://doi.org/10.1037/0033-2909.109.2.163
30. Beck A. T., Epstein N., Brown G., Steer R. A. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol. 1988; 56 (6): 893–897. https://doi.org/10.1037//0022–006x.56.6.893
31. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960; 23 (1): 56–62. https://doi.org/10.1136/jnnp.23.1.56
32. Arendt J. F.H., Horváth-Puhó E., Sørensen H. T. et al. Plasma Vitamin B 12 Levels, High-Dose Vitamin B 12 Treatment, and Risk of Dementia. J Alzheimers Dis. 2021; 79 (4): 1601–1612. https://doi.org/10.3233/JAD-201096
33. O’Leary F., Allman-Farinelli M., Samman S. Vitamin В12 status, cognitive decline and dementia: a systematic review of prospective cohort studies. Br J Nutr. 2012; 108 (11): 1948–1961. https://doi.org/10.1017/S0007114512004175
34. Hooshmand B., Appold F., Fissler P. et al. Markers of Vitamin B 12 Status in Relation to Cerebrospinal Fluid Biomarkers of Alzheimer’s Disease and Cognitive Performance. Annals of neurology. 2023; 94 (2): 223–231. https://doi.org/10.1002/ana.26673
35. Clarke R., Birks J., Nexo E. et al. Low vitamin B 12 status and risk of cognitive decline in older adults. Am J Clin Nutr. 2007; 86 (5): 1384–1391. https://doi.org/10.1093/ajcn/86.5.1384
36. Zhang C, Luo J, Yuan C, Ding D. Vitamin B 12, B 6, or Folate and Cognitive Function in Community-Dwelling Older Adults: A Systematic Review and Meta-Analysis. J Alzheimers Dis. 2020; 77 (2): 781–794. https://doi.org/10.3233/JAD-200534
37. Lane A., Lau L., Alhannat C. et al. Risk Factors and Comorbidities Associated With Vitamin B12 Deficiency in an Adult Population. J Prim Care Community HealthStroop, J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935; 18 (6): 643–662.
38. Wang H. X., Wahlin A., Basun H. et al. Vitamin B 12 and folate in relation to the development of Alzheimer’s disease. Neurology. 2001; 56 (9): 1188–1194. https://doi.org/10.1212/wnl.56.9.1188
39. Siuda J., Gorzkowska A., Patalong-Ogiewa M. et al. From mild cognitive impairment to Alzheimer’s disease – influence of homocysteine, vitamin B 12 and folate on cognition over time: results from one-year follow-up. Neurol Neurochir Pol. 2009; 43 (4): 321–329.
40. Wright C. B., Lee H. S., Paik M. C. et al. Total homocysteine and cognition in a tri-ethnic cohort: the Northern Manhattan Study. Neurology. 2004; 63 (2): 254–260. https://doi.org/10.1212/01.wnl.0000129986.19019.5d
41. Ueno A., Hamano T., Nagata M. et al. Association of vitamin B 12 deficiency in a dementia cohort with hippocampal atrophy on MRI. J Prev Alzheimers Dis. 2025; 12 (8): 100265. https://doi.org/10.1016/j.tjpad.2025.100265
42. Stroop J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935; 18 (6): 643–662.
43. Baraniuk J. N., Thapaliya K., Inderyas M. et al. Stroop task and practice effects demonstrate cognitive dysfunction in long COVID and myalgic encephalomyelitis / chronic fatigue syndrome. Sci Rep. 2024; 14 (1): 26796. https://doi.org/10.1038/s41598-024-75651-3
44. Cipriani G. E., Molfese S., Giovannelli F. et al. Executive control from healthy ageing to cognitive impairment: A systematic review of stroop and simon effects using psychophysiological and imaging techniques. Neurosci Biobehav Rev. 2025; 172: 106121. https://doi.org/10.1016/j.neubiorev.2025.106121
45. Verreckt E., Grimm E., Agrigoroaei S. et al. Investigating the relationship between specific executive functions and functional decline among community-dwelling older adults: results from a prospective pilot study. BMC Geriatr. 2022; 22 (1): 976. https://doi.org/10.1186/s12877-022-03559-6
46. Elias M. F., Robbins M. A., Budge M. M. et al. Homocysteine, folate, and vitamins B 6 and B 12 blood levels in relation to cognitive performance: the Maine-Syracuse study. Psychosom Med. 2006; 68 (4): 547–554. https://doi.org/10.1097/01.psy.0000221380.92521.51
47. Köbe T., Witte A. V., Schnelle A. et al. Vitamin B 12 concentration, memory performance, and hippocampal structure in patients with mild cognitive impairment. Am J Clin Nutr. 2016; 103 (4): 1045–1054. https://doi.org/10.3945/ajcn.115.116970
Review
For citations:
Telkova S.S., Kochetkov A.I., Ostroumova O.D., Gavrilov N.E., Starodubova A.V., Korotkova T.N., Vorozhko I.V., Orlova N.V. Clinical significance of vitamin B 12 deficiency in the development of cognitive impairment in patients with a combination of atrial fibrillation and coronary artery disease on dual antithrombotic therapy. Medical alphabet. 2025;(36):30-36. (In Russ.) https://doi.org/10.33667/2078-5631-2025-36-30-36
























