Preview

Medical alphabet

Advanced search

Summary electroencephalography: the concept of multiple generation mechanisms

https://doi.org/10.33667/2078-5631-2025-24-60-68

Abstract

The concept of formation of the summary electroencephalogram is proposed, based on the hypothesis of the existence of three different, but interconnected mechanisms of bioelectrical activity generation: dendritic integration processes, processes of change in the level of constant potential, impulse activity of cortical neurons. The interaction of sources of different nature underlies the activity recorded on the summary EEG. With the dominance of the thalamocortical system, rhythmic activity is recorded, the frequency of which depends on the functional state of the central nervous system. Discharge forms of activity on the EEG reflect the hypersynchronous impulse activity of a large pool of cortical neurons. The basis of the slow-wave activity of the delta range are dysmetabolic processes, on the one hand, suppressing the thalamocortical mechanism, on the other, causing pronounced changes in the constant potential. The proposed concept is aimed not only at explaining the diversity of EEG phenomenology, but also opens up opportunities for finding new methods of EEG analysis based on an understanding of physiological mechanisms.

About the Authors

M. V. Aleksandrov
Federal State Budgetary Institution «Almazov National Medical Research Centre» of the Ministry of Health of the Russian Federation
Russian Federation

Doctor of Medical Sciences, Professor, Head of the Department ofClinical Neurophysiology

St. Petersburg



E. L. Masherov
Federal State Autonomous Institutions «National Medical Research Center of Neurosurgery named after Academician N. N. Burdenko» of the Ministry of Health of the Russian Federation
Russian Federation

Candidate of Technical Sciences, Senior Researcher, Clinical Neurophysiology Laboratory

Moscow



L. B. Ivanov
State Budgetary Institution of Science «Children’s City Clinical Hospital No. 9 named after G.N. Speransky of the Moscow Department of Health»
Russian Federation

Candidate of Medical Sciences, Head of the Diagnostic Department 

Moscow



References

1. Aleksandrov M.V., Aleksandrov A.M. Electroencephalography: the Beginning. On the Centenary of Hans Berger’s First Recording of on Electroencephalogramm. Medical Alphabet, 2024;(22):48–53. https://doi.org/10.33667/2078-5631-2024-22-48-53.

2. Aleksandrov M.V., Ivanov L.B., Lytaev S.A., Cherny V.S., et al. Electroencephalography. 3rd ed., revised and supplemented. Ed. by M.V. Aleksandrov. St. Petersburg: SpetsLit, 2020. 224 p.

3. Zenkov L.R. Clinical electroencephalography with elements of epileptology. Moscow: Medpress, 2018.

4. Functional diagnostics: national guidelines / S.N. Avdeev, A.S. Akselrod, M.V. Alexandrov, N.F. Beresten, et al. Moscow: GEOTAR-Media, 2019; 784 p.

5. Schomer D.L., Lopes da Silva F.H. (eds.) Niedermeyer’s electroencephalography: basic principles, clinical applications, and related fields. Oxford University Press, 2018.

6. Mecarelli O. Clinical Electroencephalography. Springer, 2019.

7. Ebersole J.S. Current Practice of Clinical Electroencephalography. Wolters Kluwer, 2014.

8. Zhadin M.N. Biophysical bases of formation of electroencephalogram. Moscow: Nauka, 1984.

9. Rusinov V.S. Dominante: Electrophysiological studies. M. Medicine, 1969.

10. Walter G. The Living brain. Translated from English. M.: Mir, 1966. 300 p.

11. Gnezditsky V.V. Inverse problem of EEG and clinical electroencephalography. Moscow: Medpress-infor, 2004.

12. Hughes S.W., Crunelli V . Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist. 2005 Aug;11(4):357-72.

13. Dassios G., Fokas A.S. Electroencephalography and Magnetoencephalography: An Analytical-Numerical Approach. Berlin: de Gruyter, 2020.

14. Jatoi M.A. Kamel N. Brain Source Localization Using EEG Signal Analysis. Boca Raton: CTC Press, 2018.

15. Köhling R, Höhling J-M, Straub H, et al. Optical monitoring of neuronal activity during spontaneous sharp waves in chronically epileptic human neocortical tissue. J Neurophysiol. 2000;84: 2161–2165.

16. Köhling R, Reinel J, Vahrenhold J, et al. Spatio-temporal patterns of neuronal activity: analysis of optical imaging data using geometric shape matching. J Neurosci Methods. 2002;114:17–23

17. Gorji A, Straub H, Speckmann E-J. Epilepsy surgery: perioperative investigations of intractable epilepsy. Anat Embryol (Berlin). 2005;210:525–537.

18. Speckmann E.J., Elger C.E., Gorji A. Neurophysiologic Basis of EEG and DC Potentials // Niedermeyer’s electroencephalography: basic principles, clinical applications, and related fields/ [edited by] Donald L. Schomer, Fernando H. Lopes da Silva. – 6th ed. P. 17–31.

19. Livanov M.N. Biocurrents in the visual analyzer. In: Problems of physiological optics. Moscow: Publishing house of the USSR Academy of Sciences. 1944.

20. Andersen Per, Andersson Sven Anders. Physiological Basis of the Alpha Rhythm. Appleton Century Crofts, 1968.

21. Aleksandrov M.V., Chuklovin A.A., Pavlovskaya M.E., Arkhipova N.B. Alpha-theta continuum: neurophysiological mechanisms of generation. Medical alphabet. Modern functional diagnostics, 2017.1:46–50.

22. Popov E.P. Theory of linear systems of automatic regulation and control. Moscow: Nauka, 1989.

23. Sazonova O.B., Ogurtsova A.A., Troshina E.M., Masherov E.L. Possibilities of electroencephalography in assessing collateral circulation of the human brain. In: Proceedings of the NT + M&Ec`2021 conference

24. Portnova G.V., Kancerova A.O., Oknina L.B., Pitskhelauri D.I., Podlepich V.V., Vologdina Ya.O., Masherov E.L. Increase in the peak frequency of the EEG alpha rhythm when presenting one’s own name during deep anesthesia. Moscow: Journal of Higher Nervous Activity named after I.P. Pavlov, 2023. Vol. 75, No. 5.

25. Privodnova E.Yu., Wolf N.V. Association of the val66met polymorphism of the brainderived neurotrophic factor (BDNF) gene with individual peak frequency and power of the EEG alpha rhythm in adult subjects. Human Physiology. 2023. Vol. 49. No. 4.

26. Gable P., Miller M., Bernat E. The Oxford Handbook of EEG Frequency. Oxford University Press, 2022.

27. Masherov E.L. Electrochemical feedback as one of the possible mechanisms for generating the low-frequency component of the brain’s bioelectric activity. Biophysics, 2019, v.64, no.3

28. Pikovsky A., Rosenblum M., Kurts J. Synchronization: A Fundamental Nonlinear Phenomenon. Moscow: Tekhnosfera, 2003.

29. Masherov E.L. Origin of the low-frequency component of brain biopotentials, in: Ivanov L.B. Applied computer electroencephalography. Moscow: MBN, 2004, pp. 232–242.

30. Köhling R, Höhling J-M, Straub H, et al. Optical monitoring of neuronal activity during spontaneous sharp waves in chronically epileptic human neocortical tissue. J Neurophysiol. 2000;84:2161–2165.

31. Gorji A, Straub H, Speckmann E-J. Epilepsy surgery: perioperative investigations of intractable epilepsy. Anat Embryol (Berlin). 2005;210:525–537.

32. Masherov E.L. Model of activity generation in the epileptic focus. Biophysics, 2021. v. 66, no. 4.

33. Aleksandrov M.V. et al. Neurophysiological intraoperative monitoring in neurosurgery. St. Petersburg: Spetslit, 2019.

34. Arkhipova N.B., Aleksandrov M.V. Effect of sevoflurane on high-frequency bioelectrical activity of the brain. Translational Medicine. 2019. Vol. 6. No. 6. P. 23–28.

35. Aleksandrov M.V., Arkhipova N.B., Ulitin A.Yu. Analysis of high-frequency bioelectrical activity of the brain in drug-resistant epilepsy. Bulletin of the Russian Military Medical Academy. 2018;9(2):76–80.

36. Chae Jung Park, Seung Bong Hong, High Frequency Oscillations in Epilepsy: Detection Methods and Considerations in Clinical Application. J Epilepsy Res. 2019 Jun;9(1).

37. Penfield W., Jasper G. Epilepsy and functional anatomy of the human brain. Moscow: Foreign Publishing House. lit., 1958. 482 p.

38. Vartanov A.V. A new approach to spatial localization of electrical activity based on EEG data. Epilepsy and paroxysmal conditions. 2023, v. 15, no. 4.

39. Rusinov V.S., Grindel O.M., Boldyreva G.N., Vakar E.M. Biopotentials of the human brain. Moscow: Medicine, 1987.

40. Ivanov L.B. Applied computer electroencephalography. Moscow: MBN, 2004

41. Сhang-Hwan Im (ed.) Computational EEG Analysis: Methods and Applications. Springer, 2018.

42. Majumdar K. A Brief Survey of Quantitative EEG. Taylor&Francis, 2018.


Review

For citations:


Aleksandrov M.V., Masherov E.L., Ivanov L.B. Summary electroencephalography: the concept of multiple generation mechanisms. Medical alphabet. 2025;(24):60-68. (In Russ.) https://doi.org/10.33667/2078-5631-2025-24-60-68

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)