Influence of Micro- and Macrorelief of Implant Surfaces on Osteointegration and Longevity of Implants
https://doi.org/10.33667/2078-5631-2025-20-51-56
Abstract
Introduction. Implantology is currently one of the most dynamically developing areas of dentistry, which is due to the growing prevalence of partial and complete absence of teeth, as well as the increased need of patients for highly effective methods aimed at restoring chewing function. The key factor for successful implantation is osseointegration, the process of forming a strong bond between bone tissue and a dental implant. Effective osseointegration ensures not only the reliability and long-term functionality of the implants, but also the stability of the entire structure. Existing studies on the effect of micro- and macrorelief of the implant surface on the process of osseointegration provide contradictory data. The purpose of this literature review is to evaluate the effect of various types of dental implant surfaces on the speed and quality of osseointegration, as well as on the durability of implants.
Methods. For the research, a detailed search of scientific data was conducted in the electronic databases PubMed, Cyber Leninka, Elibrary, Google Scholar. The search was limited to articles in Russian and English using the terms «osseointegration» and «micro- and macro-relief of implants».
Results. The study showed that the correct choice of surface characteristics, depending on the patient’s anatomical features and operating conditions, can significantly increase the likelihood of a successful treatment outcome and ensure long-term functionality of dental implantation.
Conclusion. The results obtained emphasize the importance of osseointegration for the stability, viability and effectiveness of dental implantation, which directly depends on its micro- and macrorelief surface.
About the Authors
M. Z. ErtuvkhanovRussian Federation
Ertuvkhanov Marat Zaynullabidovich – PHD (Med.), Prosthodontist
Moscow
S. S. Ivanov
Russian Federation
Ivanov Sergey Sergeevich – PHD (Med.), Assistant of the Department of Maxillofacial and Oral Surgery
Moscow
S. D. Danshina
Russian Federation
Danshina Svetlana Dmitrievna – PHD (Med.), Assistant of the Department of Propaedeutics of Dental Diseases, Institute of Dentistry
Moscow
D. A. Nakonechnyi
Russian Federation
Nakonechnyi Dmitry Aleksandrovich – Associate Professor of the Department of Oral and Maxillofacial Surgery
Smolensk
N. F. Yamurkova
Russian Federation
Yamurkova Nina Fedorovna – DDS (Med.), Associate Professor, Honored Doctor of the Russian Federation, Highest Category Maxillofacial Surgeon
Nizhny Novgorod
References
1. Naumovich S.A., Golovko A.I. Analysis of factors influencing the process of osseointegration of dental implants in the planning of orthopedic treatment. Modern dentistry. 2019. No. 3 (76), pp. 44–50.
2. Vorobyov A.A., Shemonaev V.I., Mikhalchenko D.V., Velichko A.S. A look at the problem of dental implantation in the light of modern scientific concepts. Volgograd Scientific and Medical Journal. 2009. No. 2, pp. 19–24.
3. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont. 1998 SepOct;11(5):391–401. PMID: 9922731.
4. Ivanov P.V., Makarova N. I., Bulkina N.V., Zyulkina L.A. Modern concepts of osseointegration of dental implants. Izvestiya vuzov. The Volga region. Medical sciences. 2018. No. 4 (48), pp. 191–202.
5. Poroyskiy S.V., Mikhalchenko D.V., Yarygina E.N., Khvostov S.N., Zhidovinov A.V. On the issue of osseointegration of dental implants and methods of its stimulation. Bulletin of VolGMU. 2015. No. 3(55), pp. 6–9.
6. Mikhalchenko V.F., Mikhalchenko D.V., Poroshin A.V. A way to improve the process of dental implant osseointegration. Volgograd Scientific and Medical Journal. 2014. No. 3, pp. 89–94.
7. Isroilov S.A., Absalamova N.F., Sattarova Kh.Yu., Javadova L.M., Kholbaeva N.A. Development of a system for predicting the outcomes of dental implantation. Dostizheniya nauki i obrazovaniya. 2019, no. 12(53), pp. 65–68.
8. Negmatova D.U., Kamariddinzoda M.K. Modern approaches to solving biomechanical problems of dental implantology. Issues of science and education. 2019. No. 7(53), pp. 227–234.
9. Chrcanovic BR, Kisch J, Albrektsson T, Wennerberg A. Analysis of risk factors for cluster behavior of dental implant failures. Clin Implant Dent Relat Res. 2017 Aug;19(4):632-642. doi: 10.1111/cid.12485. Epub 2017 Mar 22. PMID: 28332286.
10. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007 Jul;23(7):844–54. doi: 10.1016/j.dental.2006.06.025. Epub 2006 Aug 14. PMID:16904738.
11. Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-toimplant anchorage in man. Acta Orthop Scand. 1981;52(2):155–70. doi:10.3109/17453678108991776. PMID: 7246093.
12. Volozhin G.A., Alyokhin A.P., Markeev A.M. Influence of physico-chemical properties of the surface of titanium implants and methods of their modification on the indicators of osseointegration (Part I. The main indicators of osseointegration, depending on the properties of the implant surface). Institute of Dentistry. – 2009. – № 3(44). – Pp. 81–83.
13. Sennerby L, Ericson LE, Thomsen P, Lekholm U, Astrand P. Structure of the bone-titanium interface in retrieved clinical oral implants. Clin Oral Implants Res. 1991 Jul-Sep;2(3):103-11. doi: 10.1034/j.1600-0501.1991.020302.x. PMID: 1843463.
14. Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acidetched surface: a histometric study in the canine mandible. J Biomed Mater Res. 1998 Apr;40(1):1-11. doi: 10.1002/(sici)1097-4636(199804)40:1<1::aidjbm1>3.0.co;2-q. PMID: 9511093.
15. Rausch-fan X, Qu Z, Wieland M, Matejka M, Schedle A. Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces. Dent Mater. 2008 Jan;24(1):102-10. doi: 10.1016/j.dental.2007.03.001. Epub 2007 Apr 27. PMID: 17467048.
16. Calciolari E, Hamlet S, Ivanovski S, Donos N. Pro-osteogenic properties of hydrophilic and hydrophobic titanium surfaces: Crosstalk between signalling pathways in in vivo models. J Periodontal Res. 2018 Aug;53(4):598-609. doi:10.1111/jre.12550. Epub 2018 Apr 23. PMID: 29687451.
17. Stich T, Alagboso F, Křenek T, Kovářík T, Alt V, Docheva D. Implantbone-interface: Reviewing the impact of titanium surface modifications on osteogenic processes in vitro and in vivo. Bioeng Transl Med. 2021 Jul 12;7(1):e10239. doi: 10.1002/btm2.10239. PMID: 35079626; PMCID: PMC8780039.
18. Lin X, Zhou L, Li S, Lu H, Ding X. Behavior of acid etching on titanium: topography, hydrophility and hydrogen concentration. Biomed Mater. 2014 Feb;9(1):015002. doi: 10.1088/1748-6041/9/1/015002. Epub 2013 Dec 16. PMID: 24343349.
19. Ermrich M. Titanium hydride and hydrogen concentration in acid-etched commercially pure titanium and titanium alloy implants: a comparative analysis of five implant systems. Clin Oral Implants Res. 2010 Sep;21(9):944-50. doi:10.1111/j.16000501.2010.01938.x. Epub 2010 May 3. PMID: 20465551.
20. Wong M, Eulenberger J, Schenk R, Hunziker E. Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res. 1995 Dec;29(12):1567-75. doi: 10.1002/jbm.820291213. PMID: 8600147.
21. Aljateeli M, Wang HL. Implant microdesigns and their impact on osseointegration. Implant Dent. 2013 Apr;22(2):127-32. doi:10.1097/ID.0b013e318278a90b. PMID: 23364448.
22. Rozhnov, S.M. Strength of teeth and implants: morphometric characteristics compared with design features. Rossiyskaya stomatologiya. 2015, vol. 8, no. 2, pp. 49–57.
23. Kulik K.S. Evaluation of osseointegration of dental implants with Hybrid Surface Treatment. European Scientific Conference: collection of articles of the VII International Scientific and Practical Conference: in 2 parts, Penza, November 07, 2017. Volume Part 1. Penza: «Science and Enlightenment» (IP Gulyaev G.Yu.), 2017. pp. 199–203.
24. Vinnikov L.I., Savransky F.Z., Simakhov R.V., Grishin P.O. Advantages of Clean Porostm, a new technological method for surface treatment of dental implants. SR. 2015. No. 4 (7), pp. 61–68.
25. Schispake H., Schanveber D., Dard M., et al. Functionalization of dental implants surface usingadhesion molecules. Journal of Biomedical Maferia’s Research, 2005, vol. 73, pp. 83–96.
26. Misch C.E. Contemporary Implant Dentistry. St. Louis: Mosby Elsevier 2008.
27. Stanford CM, Schneider GB. Functional behaviour of bone around dental implants. Gerodontology. 2004 Jun;21(2):71–7. doi: 10.1111/j.1741-2358.2004.00006.x. PMID: 15185986.
28. Fazel A, Aalai S, Rismanchian M. Effect of macro-design of immediately loaded implants on micromotion and stress distribution in surrounding bone using finite element analysis. Implant Dent. 2009 Aug;18(4):345–52. doi:10.1097/ID.0b013e31819cd938. PMID: 19667823.
29. Stanford C.M. Surface modifications of dental implants. Aust Dent L, 2008, vol. 53. pp. 26–33.
30. Sahiwal IG, Woody RD, Benson BW, Guillen GE. Macro design morphology of endosseous dental implants. J Prosthet Dent. 2002. May;87(5):543–51. doi: 10.1067/mpr.2002.124432. PMID: 12070518.
Review
For citations:
Ertuvkhanov M.Z., Ivanov S.S., Danshina S.D., Nakonechnyi D.A., Yamurkova N.F. Influence of Micro- and Macrorelief of Implant Surfaces on Osteointegration and Longevity of Implants. Medical alphabet. 2025;(20):51-56. (In Russ.) https://doi.org/10.33667/2078-5631-2025-20-51-56