Preview

Medical alphabet

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Modern understanding of the relationship between intestinal microbiota and development of allergic diseases in children

https://doi.org/10.33667/2078-5631-2024-16-48-52

Abstract

by many factors, including the course of labor, the child’s diet and antibiotic therapy. According to the hygiene theory, the development of dysbiosis at an early age can lead to an increased risk of sensitization and allergic diseases. Moreover, a decrease in the number of certain microorganisms can lead to disruption of intestinal barrier function and differentiation of naïve T cells. The goal of this review is to study the relationship between the levels of various microorganisms that make up the intestinal microbiota and the risk of developing various allergic conditions in children. A review of the literature published on this topic was conducted using the Pubmed and ResearchGate databases. The level of microorganisms in the intestinal microbiota that produce butyric acid, such as Ruminococcus, Lachnospira and Roseburia, attracts special attention. This compound plays a role in the immune system’s ability to suppress excessive immune responses. A decrease in the levels of microorganisms that produce butyric acid was noted in 4 of 6 studies examining its level in patients with allergic diseases. Providing a high level of microbiota that produces the chemical compounds necessary to maintain the intestinal barrier and form the immune response is a key to a new approach to the prevention and treatment of allergic diseases.

About the Authors

S. G. Makarova
National Medical Research Center of Children’s Health
Russian Federation

Makarova Svetlana G., DM Sci (habil.), deputy director

Moscow



A. P. Fisenko
National Medical Research Center of Children’s Health
Russian Federation

Fisenko Andrey P., DM Sci (habil.), director

Moscow



I. G. Gordeeva
National Medical Research Center of Children’s Health
Russian Federation

Gordeeva Irina G., junior researcher of Laboratory of Clinical Immunology and Nutritionology, pediatrician

Moscow



E. E. Emeliashenkov
National Medical Research Center of Children’s Health
Russian Federation

Emeliashenkov Evgeniy E., PhD Med, researcher, Laboratory of Clinical
Immunology and Nutritionology

Moscow



References

1. Rackaityte E., Halkias J. Mechanisms of Fetal T Cell Tolerance and Immune Regulation. Front. Immunol. 2020; 11: 588. DOI: 10.3389/fimmu.2020.00588

2. Tordesillas L, Berin MC. Mechanisms of Oral Tolerance. Clin. Rev. Allergy Immunol. 2018; 55 (2): 107–117. DOI: 10.1007/s12016 018–8680–5

3. Verduci, E., Zuccotti, G.V., Peroni, D. G. New Insights in Cow’s Milk and Allergy: Is the Gut Microbiota the Missing Link? Nutrients. 2022; 14: 1631. https://doi.org/10.3390/ nu14081631

4. De Martinis M, Sirufo MM, Suppa M, Ginaldi L. New Perspectives in Food Allergy. Int J. Mol. Sci. 2020;21 (4): 1474. DOI: 10.3390/ijms21041474

5. Rey-Mariño, A., Francino, M. P. Nutrition, Gut Microbiota, and Allergy Development in Infants. Nutrients. 2022; 14: 4316. https:// doi.org/10.3390/nu14204316

6. Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989; 299: 1259–60. DOI: 10.1136/bmj.299.6710.1259

7. Mitselou N, Hallberg J, Stephansson O, Almqvist C, Melen E, Ludvigsson JF. Cesarean delivery, preterm birth, and risk of food allergy: Nationwide Swedish cohort study of more than 1 million children. J. Allergy Clin. Immunol. 2018; 142: 1510–4. e2. DOI: 10.1016/j.jaci.2018.06.044

8. Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR. A metaanalysis of the association between Caesarean section and childhood asthma. Clin. Exp. Allergy. 2008; 38: 629e33. DOI: 10.1111/j.1365–2222.2007.02780.x

9. Bager P, Wohlfahrt J, Westergaard T. Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin. Exp. Allergy. 2008; 38: 634e42. DOI: 10.1111/j.1365–2222.2008.02939.x

10. Yamamoto-Hanada K, Yang L, Narita M, Saito H, Ohya Y. Influence of antibiotic use in early childhood on asthma and allergic diseases at age 5. Ann Allergy Asthma Immunol 2017; 119: 54e8. DOI: 10.1016/j.anai.2017.05.013

11. Mitre E, Susi A, Kropp LE, Schwartz DJ, Gorman GH, Nylund CM. Association between use of acid-suppressive medications and antibiotics during infancy and allergic diseases in early childhood. JAMA Pediatr. 2018; 172: e180315. DOI: 10.1001/jamapediatrics.2018.0315

12. Tsakok T, McKeever TM, Yeo L, Flohr C. Does early life exposure to antibiotics increase the risk of eczema? A systematic review. Br. J. Dermatol. 2013; 169: 983e91. DOI: 10.1111/bjd.12476

13. Bauer H, Horowitz RE, Levenson SM, Popper H. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am J. Pathol. 1963; 42: 471e83.

14. Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M. et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science. 2010; 328: 1705e9. DOI: 10.1126/science.1188454

15. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013; 500: 232e6. DOI: 10.1038/nature12331

16. Cahenzli J, Koller Y, Wyss M, Geuking MB, McCoy KD. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell. Host. Microbe. 2013; 14: 559e70. DOI: 10.1016/j.chom.2013.10.004

17. Oyama N, Sudo N, Sogawa H, Kubo C. Antibiotic use during infancy promotes a shift in the T(H)1/T(H)2 balance toward T(H)2-dominant immunity in mice. J. Allergy Clin. Immunol. 2001; 107: 153e9. DOI: 10.1067/mai.2001.111142

18. Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M, et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 2012; 13: 440e7. DOI: 10.1038/embor.2012.32

19. Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci U S A. 2014; 111: 13145e50. DOI: 10.1073/pnas.1412008111

20. Sansom DM, Walker LS. The role of CD 28 and cytotoxic T-lymphocyte antigen4 (CTLA‑4) in regulatory T-cell biology. Immunol Rev. 2006; 212: 131e48. DOI: 10.1111/j.0105–2896.2006.00419.x

21. Fontenot JD, Gavin MA, Rudensky AY. Pillars Article: Foxp3 programs the development and function of CD 4+CD 25+ regulatory T cells. J. Immunol. 2017; 198: 986e92. DOI: 10.1038/ni904

22. Wannemuehler M. et al. Lipopolysaccharide (LPS) regulation of the immune response: LPS converts germfree mice to sensitivity to oral tolerance induction. J. Immunol. 1982. 129 (3): 959–965.

23. Hacini-Rachinel F. et al. Intestinal dendritic cell licensing through Toll-like receptor 4 is required for oral tolerance in allergic contact dermatitis. J. Allergy Clin Immunol. 2018; 141 (1): 163–170. DOI: 10.1016/j.jaci.2017.02.022

24. Wang S, Charbonnier LM, Noval Rivas M, Georgiev P, Li N, Gerber G, Bry L, Chatila TA. MyD 88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism. Immunity. 2015; 43 (2): 289–303. DOI: 10.1016/j.immuni.2015.06.014

25. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2014; 118 (2): 229–241. DOI: 10.1016/j.cell.2004.07.002

26. Han D, Walsh MC, Cejas PJ, Dang NN, Kim YF, Kim J, CharrierHisamuddin L, Chau L, Zhang Q, Bittinger K, Bushman FD, Turka LA, Shen H, Reizis B, DeFranco AL, Wu GD, Choi Y. Dendritic cell expression of the signaling molecule TRAF6 is critical for gut microbiota-dependent immune tolerance. Immunity. 2013; 38 (6): 1211–1222. DOI: 10.1016/j.immuni.2013.05.012

27. Plunkett CH, Nagler CR. The influence of the microbiome on allergic sensitization to food. J. Immunol. 2017; 198 (2): 581–589. DOI: 10.4049/jimmunol.1601266

28. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505 (7484): 559–563. DOI: 10.1038/nature12820

29. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013; 504 (7480): 446–450. DOI: 10.1038/nature12721

30. Bunyavanich S, Shen N, Grishin A, Wood R, Burks W, Dawson P. et al. Early-life gut microbiome composition and milk allergy resolution. J. Allergy ClinImmunol. 2016; 138: 1122e30. DOI: 10.1016/j.jaci.2016.03.041

31. Chen CC, Chen KJ, Kong MS, Chang HJ, Huang JL. Alterations in the gut microbiotas of children with food sensitization in early life. Pediatr. Allergy. Immunol. 2016; 27: 254e62. DOI: 10.1111/pai.12522

32. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 2016; 22: 1187e91. DOI: 10.1038/nm.4176

33. Tanaka M, Korenori Y, Washio M, Kobayashi T, Momoda R, Kiyohara C, et al. Signatures in the gut microbiota of Japanese infants who developed food allergies in early childhood. FEMS Microbiol. Ecol. 2017; 93. https://doi.org/10.1093/femsec/fix099

34. Arrieta MC, Arevalo A, Stiemsma L, Dimitriu P, Chico ME, Loor S, et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J. Allergy Clin. Immunol. 2018; 142: 424–34.e10. DOI: 10.1016/j.jaci.2017.08.041

35. Fazlollahi M, Chun Y, Grishin A, Wood RA, Burks AW, Dawson P, et al. Early-life gut microbiome and egg allergy. Allergy. 2018; 73: 1515e24. DOI: 10.1111/all.13389

36. Savage JH, Lee-Sarwar KA, Sordillo J, Bunyavanich S, Zhou Y, O’Connor G, et al. A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy. 2018; 73: 145e52. DOI: 10.1111/all.13232

37. Stokholm J, Blaser MJ, Thorsen J, Rasmussen MA, Waage J, Vinding RK. et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 2018; 9: 141. DOI: 10.1038/s41467–017–02573–2

38. Simonyte Sjodin K, Hammarstrom ML, Ryden P, Sjodin A, Hernell O, Engstrand L. et al. Temporal and long-term gut microbiota variation in allergic disease: a prospective study from infancy to school age. Allergy. 2019; 74: 176e85. DOI: 10.1111/all.13485

39. Bannier M, van Best N, Bervoets L, Savelkoul PHM, Hornef MW, van de Kant KDG. et al. Gut microbiota in wheezing preschool children and the association with childhood asthma. Allergy. 2020; 75: 1473e6 DOI: 10.1111/all.14156

40. Los-Rycharska E, Golebiewski M, Sikora M, Grzybowski T, Gorzkiewicz M, Popielarz M. et al. A combined analysis of gut and skin microbiota in infants with food allergy and atopic dermatitis: a pilot study. Nutrients. 2021; 13: 1682. DOI: 10.3390/nu13051682

41. Mennini M., Reddel S., Del Chierico F., Gardini S., Quagliariello A., Vernocchi P., Valluzzi R. L., Fierro V., Riccardi C., Napolitano T. et al. Gut Microbiota Profile in Children with IgE-Mediated Cow’s Milk Allergy and Cow’s Milk Sensitization and Probiotic Intestinal Persistence Evaluation. Int. J. Mol. Sci. 2021; 22: 1649. https://doi.org/10.3390/ijms22041649

42. Mahdavinia M, Fyolek JP, Jiang J, Thivalapill N, Bilaver LA, Warren C, Fox S, Nimmagadda SR, Newmark PJ, Sharma H, Assa’ad A, Seed PC, Gupta RS. Gut microbiome is associated with asthma and race in children with food allergy. J. Allergy Clin. Immunol. 2023 Dec; 152 (6): 1541–1549.e1. DOI: 10.1016/j.jaci.2023.07.024

43. Yamagishi M, Akagawa S, Akagawa Y, Nakai Y, Yamanouchi S, Kimata T, et al. Decreased butyric acid-producing bacteria in gut microbiota of children with egg allergy. Allergy. 2021; 76: 2279e82. DOI: 10.1111/all.14795

44. Akagawa S, Kaneko K. Gut microbiota and allergic diseases in children. Allergol Int. 2022; 71 (3): 301–309. DOI: 10.1016/j.alit.2022.02.004

45. Roduit C, Frei R, Ferstl R, Loeliger S, Westermann P, Rhyner C. et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy. 2019; 74: 799e809. DOI: 10.1111/all.13660

46. Zolkiewicz J, Marzec A, Ruszczynski M, Feleszko W. Postbiotics-A step beyond preand probiotics. Nutrients. 2020; 12: 2189. DOI: 10.3390/nu12082189

47. Berni Canani R, Paparo L, Nocerino R, Di Scala C, Della Gatta G, Maddalena Y, Buono A, Bruno C, Voto L, Ercolini D. Gut Microbiome as Target for Innovative Strategies Against Food Allergy. Front Immunol. 2019 Feb 15; 10: 191. DOI: 10.3389/fimmu.2019.00191.


Review

For citations:


Makarova S.G., Fisenko A.P., Gordeeva I.G., Emeliashenkov E.E. Modern understanding of the relationship between intestinal microbiota and development of allergic diseases in children. Medical alphabet. 2024;(16):48‑52. (In Russ.) https://doi.org/10.33667/2078-5631-2024-16-48-52

Views: 131


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)