Preview

Medical alphabet

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Updated national guidelines for spirometry. Part 2. An Approach to Interpreting Spirometry

https://doi.org/10.33667/2078-5631-2024-6-7-15

Abstract

The second part of the article discusses the spirometry interpretation using the latest international and national recommendations. Different systems of predicted values were considered, attention was paid to the GLI‑2012 reference equations advantages and the z-score assessment. The severity classification, obstructive disorders, extrathoracic and intrathoracic airway obstruction and possible spirometry indications of restrictive and mixed ventilation disorders were considered. The algorithm for spirometry evaluation was also presented, and the most common errors in the spirometry interpretation were discussed. 

About the Authors

M. Yu. Kameneva
Pavlov First Saint Petersburg State Medical University
Russian Federation

Kameneva Marina Yu., MD, Leading Researcher at the Research Institute of Rheumatology and Allergology of the Scientific and Clinical Research Center, doctor
of functional Diagnostics of the functional diagnostics office of the polyclinic with the CDC Clinic of the Scientific and Clinical Research Center



L. D. Kiryukhina
Pulmonology Scientific Research Institute; Saint-Petersburg State Research Institute of Phthisiopulmonology
Russian Federation

Kiryukhina Larisa D., Ph.D., Head of the Department of Functional and Ultrasound Diagnostics, Leading researcher, Head of the Research Laboratory of Functional research

 Moscow



P. V. Struchkov
Academy of Postgraduate Education under FSBU FSCC of FMBA of Russia, 5 Clinical Hospital No.85
Russian Federation

Struchkov Pyotr V., MD, Professor, Head of the Department of Clinical Physiology and Functional Diagnostics of the Academy of Postgraduate Education, Deputy Head of Diagnostic Service

 Moscow



References

1. Quanjer P.H., Tammeling G. J., Cotes J. E. et al. Lung volumes and forced ventilatory flows. Report working party standardization of lung function tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur. Respir. J. Suppl. 1993; 6 (16 Suppl): 5-40. DOI: 10.1183/09041950.005s1693

2. KlementR. F., LavrushinA.A., Ter-Poghosyan P.A., Kotegov Yu.M. Instructions for the formulas and tables of the main spirometry predicted values. Leningrad: Research Institute of Pulmonology, 1986. 79 p.

3. Kameneva M. Y., Tishkov A. V., Byhova A. V. et al. Consistency analysis of some reference systems in the interpretation of spirometry. Russian family doctor. 2012; 16 (2): 23-28. DOI: 10.17816/RFD2012223-28

4. Klement R. F., Zilber N. A. Methodological features of parameters of “flow-volume” curve in infants. Pulmonology. 1994; (2): 17-21. https://journal.pulmonology.ru/ pulm/article/view/3578/2946 Date of access: 05.02.2024.

5. ShiryaevaI. S., Saveliev B.P., Markov B.A.Pereverzeva N.Yu.Predicted values of the flow-volume curve of forced exhalation in children 6-16 years old. Maternal and child health issues. 1990; 9: 8-11.

6. Quanjer P.H., Stanojevic S., Cole T. J. et al. Multi-ethnic reference values for spirometry for the 3-95 yr age range: the global lung function 2012 equations. Eur. Respir. J. 2012; 40(10): 1324-1343. https://doi. org/10.1183/09031936.00080312

7. Stanojevic S., Bilton D., McDonald A. et al. Global Lung Function Initiative equations improve interpretation of FEV1 decline among patients with cystic fibrosis. Eur. Respir J 20.15; 46(1): 262-264

8. Turkeshi E., Vaes B., Andreeva E. et al. Airflow limitation by the Global Lungs Initiative equations in a cohort of very old adults. Eur. Respir. J. 2015; 46(1): 123-132.

9. Cooper B.G., Stocks J., Hall G. L. et al. The Global Lung Function Initiative (GLI) Network: bringing the world’s respiratory reference values together. Breathe 2017; 13: e56 e64.

10. Presti T.P., JohnsonD. C.Improving pulmonary function test interpretation. Eur. Respir. J. 2023; 61: 2201858; DOI: 10.1183/13993003.01858-2022

11. Hall G.L., Filipow N., Ruppel G. et al. Global Lung Function Initiative reference values for static lung volumes in individuals of European ancestry. Eur. Respir. J. 2021; 57: 2000289

12. Struchkov P. V., KiryukhinaL. D., Drozdov D. V. Predicted values in the lung function testing. Different predicted values — different conclusions? Medical alphabet. 2021; (15): 22-26. DOI: 10.33667/2078-5631-2021-15-22-26

13. Quanjer P.H., Stanojevic S. Do the Global Lung Function Initiative 2012 equations fit my population? European Respiratory Journal 2016 48: 1782-1785; DOI: 10.1183/13993003.01757-2016

14. Kameneva M.Yu., CherniakA.V., AisanovZ.R., et al. Spirometry: national guidelines for the testing and interpretation of results. Pulmonology. 2023; 33 (3): 307-340. DOI: 10.18093/0869-0189-2023-33-3-307-340

15. Hansen J. E. Lower limit of normal is better than 70% or 80%. Chest. 2011; 139 (1): 6-8. DOI: 10.1378/chest.10-1117. 25

16. Miller M.R., Quanjer P.H., Swanne M. P. et al. Interpreting lung function data using 80% predicted and fixed thresholds misclassifies more than 20% of patients. Chest. 2011; 139 (1): 52-59. DOI: 10.1378/ chest.10-0189.

17. Stanojevic S., Kaminsky D. A., Miller M. R. et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir. J. 2022; 60 (1): 2101499. DOI: 10.1183/13993003.01499-2021

18. Crenesse D., Berlioz M., Bourrier T., Albertini M. Spirometry in children aged 3 to 5 years: reliability of forced expiratory maneuvers. Pediatr. Pulmonol. 2001; 32 (1): 56-61. DOI: 10.1002/ppul.1089

19. Piccioni P., Borraccino A., FornerisM. P. et al. Reference values of forced expiratory volumes and pulmonary flows in 3-6 year children: a cross-sectional study. Respir. Res. 2007; 8 (1): 14. DOI: 10.1186/1465-9921-8-14

20. Handbook of clinical respiratory physiology / edited by L. L. Shik, N. N. Kanaev. M.: Medicine, 1980. 376 p.

21. Kuznetsova V. K., Klement R. F., Kotegov Yu.M. et al. Criteria for assessing ventilation disorders based on the flow-volume relationship and lung volumes study. Methodological recommendations. Leningrad^ Research Institute of Pulmonology. 1988, 32 p.

22. Pellegrino R., Viegi G., Brusasco V. et al. Interpretative strategies for lung function tests. Eur. Respir. J. 2005; 26 (5): 948-968. DOI: 10.1183/09031936.05.00035205

23. Silva A., Descalço A., Martins Â. et al. Differences between % predicted and z-score. The impact on severity classification in spirometry. European Respiratory Journal 2020 56: 3790; DOI: 10.1183/13993003.congress 2020.3790

24. Aisanov Z. R., KalmanovaE. N. Bronchial Obstruction and Pulmonary Hyperinflation in Patients with Chronic Obstructive Pulmonary Disease. Practical pulmonology. 2016; (2): 9-17.

25. Miller R.D., Hyatt R. E. Evaluation of obstructing lesions of the trachea and larynx by flow-volume loops. Am. Rev. Respir. Dis. 1973; 108 (3): 475-481. DOI: 10.1164/arrd.1973.108.3.475

26. Nafisa S., Messer B., Downie B. et al. A retrospective cohort study of idiopathic diaphragmatic palsy: a diagnostic triad, natural history and prognosis. ERJ Open Res. 2021; 7 (3): 00953-2020. DOI:10.1183/23120541.00953-2020

27. Kameneva M. Yu., KirуukhinaL. D., Struchkov P. V. Updated national guidelines for spirometry. Part 1. Test rules and quality criterias Medical alphabet. 2023; (22): 7-18. https://doi.org/10.33667/2078-5631-2023-22-7-18


Review

For citations:


Kameneva M.Yu., Kiryukhina L.D., Struchkov P.V. Updated national guidelines for spirometry. Part 2. An Approach to Interpreting Spirometry. Medical alphabet. 2024;1(6):7-15. (In Russ.) https://doi.org/10.33667/2078-5631-2024-6-7-15

Views: 966


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)