

Factors affecting the bioavailability of vitamin D
https://doi.org/10.33667/2078-5631-2023-29-55-60
Abstract
There is now enough knowledge to suggest that vitamin D status is critical to overall health and balance. Vitamin D deficiency is a widespread problem and difficulties with its adequate replenishment remain, because many factors influence the absorption and bioavailability of vitamin D influenced by many factors at once. Age, diet, genetics, environmental factors, lifestyle, gut microbiome, and pharmaceutical formulation all play important roles in modulating vitamin D status in the body. Future research should continue to explore these factors and their interactions to develop effective strategies for optimizing vitamin status in humans.
About the Authors
A. N. VodolazkayaRussian Federation
Vodolazkaya Angelina N., endocrinologist, nutritionist, head of training in nutritional science
Moscow
S. V. Orlova
Russian Federation
Orlova Svetlana V., DM Sci (habil.), professor, head of Dept of Dietetics and Clinical Nutritiology; Chief Researcher
Moscow
Т. Т. Batysheva
Russian Federation
Batysheva Tatiana T., DM Sci (habil.), professor; director; head. freelance pediatric specialist neurologist of the Department of Healthcare, head. freelance children’s specialist in medical rehabilitation of the Ministry of Health of the Russian Federation, head. Department of Neurology, Physical, Rehabilitation Medicine and Childhood Psychology, Federal Scientific Educational Institution MI RUDN University, Honored Doctor of the Russian Federation
Moscow
Е. А. Nikitina
Russian Federation
Nikitina Elena A., PhD Med, assistant professor of Dept of Dietetics and Clinical Nutritiology; Researcher
Moscow
V. B. Balashova
Russian Federation
Balashova Natalya V., PhD Bio Sci, assistant professor at Dept of Clinical Laboratory Diagnostics of the Faculty of Advanced Training of Doctors; assistant professor at Dept of Dietetics and Clinical Nutritiology
Moscow
E. V. Prokopenko
Russian Federation
Prokopenko Elena V., endocrinologist, dietitian, Project Manager of Medical Department
Moscow
References
1. Christakos S., Dhawan P., Verstuyf A., Verlinden L., Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016; 96: 365–408. DOI: 10.1152/physrev.00014.2015
2. Spiro A, Buttriss JL. Vitamin D: An overview of vitamin D status and intake in Europe. Nutr. Bull. 2014 Dec; 39 (4): 322–350. DOI: 10.1111/nbu.12108. PMID: 25635171; PMCID: PMC4288313
3. Chalcraft JR, Cardinal LM, Wechsler PJ, Hollis BW, Gerow KG, Alexander BM, et al. Vitamin D synthesis following a single bout of sun exposure in older and younger men and women. Nutrients 2020; 12: 2237. DOI: 10.3390/nu12082237
4. Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: National Academy Press, 2010.
5. Ofoedu CE, Iwouno JO, Ofoedu EO, Ogueke CC, Igwe VS, Agunwah IM, Ofoedum AF, Chacha JS, Muobike OP, Agunbiade AO, Njoku NE, Nwakaudu AA, Odimegwu NE, Ndukauba OE, Ogbonna CU, Naibaho J, Korus M, Okpala COR. Revisiting foodsourced vitamins for consumer diet and health needs: a perspective review, from vitamin classification, metabolic functions, absorption, utilization, to balancing nutritional requirements. PeerJ. 2021 Sep 1; 9: e11940. DOI: 10.7717/peerj.11940. PMID: 34557342; PMCID: PMC8418216
6. Benedik E. Sources of vitamin D for humans. Int J. Vitam. Nutr. Res. 2022 Mar; 92 (2): 118–125. DOI: 10.1024/0300–9831/a000733. Epub 2021 Oct 18. PMID: 34658250
7. Galchenko A, Gapparova K, Sidorova E. The influence of vegetarian and vegan diets on the state of bone mineral density in humans. Crit. Rev. Food. Sci. Nutr. 2021; 11 (1): 1–17. DOI: 10.1080/10408398.2021.1996330
8. Galchenko AV, Rajit R. Vitamin D and its status in vegetarians and vegans. Problems of biological, medical and pharmaceutical chemistry. 2021; 11. DOI: 10.29296/25877313– 2021–11–04
9. Aravindhan AG, Ralston SH, Brandi ML, et al. Investigators; GENOMOS Study. The association between common vitamin D receptor gene variations and osteoporosis: a participant-level meta-analysis. Ann Intern. Med. 2006 Aug 15; 145 (4): 255–64. DOI: 10.7326/0003–4819–145–4–200608150–00005.
10. Smagina IV, Lunev KV, Elchaninova SA, Elchaninova EYu. Association of vitamin D metabolism enzyme gene polymorphisms with multiple sclerosis risk: pilot study. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2021; 121 (7–2): 70–74.
11. Mailyan E.A., Reznichenko N.A., Mailyan D.E. Association of vitamin D system gene polymorphisms with some human diseases. Vyatka honey messenger 2017; 2 (54).
12. Liu X, Baylin A, Levy PD. Vitamin D deficiency and insufficiency among US adults: prevalence, predictors and clinical implications. Br.J. Nutr. 2018 Apr; 119 (8): 928–936. DOI: 10.1017/S0007114518000491. PMID: 29644951
13. Yang L, Zhao H, Liu K, Wang Y, Liu Q, Sun T, Chen S, Ren L. Smoking behavior and circulating vitamin D levels in adults: A meta-analysis. Food Sci. Nutr. 2021 Aug 5; 9 (10): 5820–5832. DOI: 10.1002/fsn3.2488. PMID: 34646549; PMCID: PMC8497833.
14. Noushin Hadadi, Vincent Berweiler, Haiping Wang, Mirko Trajkovski. Intestinal microbiota as a route for micronutrient bioavailability, Current Opinion in Endocrine and Metabolic Research. Vol. 20, 2021, 100285. ISSN2451–9650, https://doi.org/10.1016/j. coemr.2021.100285
15. Kumar J, Muntner P, Kaskel FJ, Hailpern SM. Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES2001–2004. Pediatrics. 2009; 124 (3): e362–70.
16. Sizar O, Khare S, Goyal A, et al. Vitamin D Deficiency. [Updated 2023 Jul 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532266/
17. Cediel G, Pacheco-Acosta J, CastiUo-Durdn C. Vitamin D deficiency in pediatric clinical practice. Arch. Argent. Pediatr. 2018 Feb 1; 116 (1): e75–e81. English, Spanish. DOI: 10.5546/aap.2018.eng.e75. PMID: 29333826
18. Michael F Holick, Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease23, The American Journal of Clinical Nutrition. 2004; 80 (6): 1678S 1688S. ISSN0002–9165, https://doi.org/10.1093/ajcn/80.6.1678S.
19. Kennel KA, Drake MT, Hurley DL. Vitamin D deficiency in adults: when to test and how to treat. Mayo Clin. Proc. 2010 Aug; 85 (8): 752–7; quiz 757–8. DOI: 10.4065/mcp.2010.0138. PMID: 20675513; PMCID: PMC2912737
20. Holick MF. Vitamin D: a d-lightful solution for health. J. Investig Med. 2011 Aug; 59 (6): 872–80. DOI: 10.2310/JIM.0b013e318214ea2d. PMID: 21415774; PMCID: PMC3738435.
21. Maltsev S.V., Mansurov G. Sh. Metabolism of vitamin D and ways of realizing its main functions. Practical medicine. 2014; 9 (85): 12–14.
22. Uwitonze AM, Razzaque MS. Role of Magnesium in Vitamin D Activation and Function. J. Am. Osteopath. Assoc. 2018 Mar 1; 118 (3): 181–189. DOI: 10.7556/jaoa.2018.037. PMID: 29480918
23. Rude R.K. Skeletal adenylate cyclase: Effect of Mg2+, Ca2+, and PTH. Calcif Tissue. Int 37, 318–323 (1985). https://doi.org/10.1007/BF02554881
24. Rude R.K., Adams J.S., Ryzen.E. et al. Low serum concentrations of 1,25-dihydroxyvitamin D in human magnesium deficiency. J. Clin. Endocrinol. Metab. 1985; 61 (5): 933–940. DOI: 10.1210 /jcem 61–5–933
25. Khalid N., Kobayashi I., Wang Z., Neves M.A., Uemura K., Nakajima M., Nabetani H. Formulation of monodisperse oil-in-water emulsions loaded with ergocalciferol and cholecalciferol by microchannel emulsification: Insights of production characteristics and stability. Int. J. Food Sci. Technol. 2015; 50: 1807–1814. DOI: 10.1111/ijfs.12832
26. Goncalves A., Gleize B., Bott R. et al. Phytosterols can impair vitamin D intestinal absorption in vitro and in mice. Mol. Nutr. Food Res. 2011; 55 (S2): S303–S311. https://doi. org/10.1002/mnfr.201100055
27. Silva MC, Furlanetto TW. Intestinal absorption of vitamin D: a systematic review. Nutr. Rev. 2018; 76 (1): 60–76. https://doi.org/10.1093/nutrit/nux034
28. Aravindhan S, Almasoody MFM, Selman NA, Andreevna AN, Ravali S, Mohammadi P, Eslami MM, Razi B, Aslani S, Imani D. Vitamin D Receptor gene polymorphisms and susceptibility to type 2 diabetes: evidence from a meta-regression and meta-analysis based on 47 studies. J. Diabetes Metab Disord. 2021 Jan 25; 20 (1): 845–867. DOI: 10.1007/ s40200–020–00704-z. PMID: 34222093; PMCID: PMC8212222
29. Yang C, Li D, Tian Y, Wang P. Ambient Air Pollutions Are Associated with Vitamin D Status. Int J Environ Res Public Health. 2021 Jun 27; 18 (13): 6887. DOI: 10.3390/ijerph18136887. PMID: 34198962; PMCID: PMC8297026
30. He H, Zeng Y, Wang X, Yang L, Zhang M, An Z. Meteorological Condition and Air Pollution Exposure Associated with Vitamin D Deficiency: A Cross-Sectional Population-Based Study in China. Risk Manag Healthc Policy. 2020 Oct 29; 13: 2317–2324. DOI: 10.2147/ RMHP.S273145. PMID: 33154683; PMCID: PMC7605970.
31. Yuan L, Ni J. The association between tobacco smoke exposure and vitamin D levels among US general population, 2001–2014: temporal variation and inequalities in population susceptibility. Environ Sci. Pollut. Res. Int. 2022 May; 29 (22): 32773–32787. DOI: 10.1007/s11356-021-17905-5. Epub 2022 Jan 12. PMID: 35020139; PMCID: PMC8752386
32. Vázquez-Lorente H, Molina-López J, Herrera-Quintana L, Gamarra-Morales Y, LópezGonzález B, Planells E. Association between Body Fatness and Vitamin D3 Status in a Postmenopausal Population. Nutrients. 2020 Feb 29; 12 (3): 667. DOI: 10.3390/nu12030667. PMID: 32121398; PMCID: PMC7146150
33. Sugimoto H, Shinkyo R, Hayashi K, Yoneda S, Yamada M, Kamakura M. et al. Crystal structure of CYP105A1 (P450SU 1) in complex with 1α,25-dihydroxy vitamin D3†,‡. Biochemistry. 2008; 47: 4017–27. DOI: 10.1021/bi7023767
34. Wu S. et al. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut, 64 (2015), pp. 1082–1094.
35. Glowka E, Stasiak J, Lulek J. Drug Delivery Systems for Vitamin D Supplementation and Therapy. Pharmaceutics. 2019 Jul 18; 11 (7): 347. DOI: 10.3390/pharmaceutics11070347. PMID: 31323777; PMCID: PMC6680748
36. Moukayed M., Grant W.B. The roles of UVB and vitamin D in reducing risk of cancer incidence and mortality: A review of the epidemiology, clinical trials, and mechanisms. Rev. Endocr. Metab. Disord. 2017; 18: 167–182. DOI: 10.1007/s11154–017–9415–2.
37. Merchan B.B., Morcillo S., Martin-Nunez G., Tinahones F.J., Macias-Gonzalez M. The role of vitamin D and VDR in carcinogenesis: Through epidemiology and basic sciences. J. Steroid Biochem. Mol. Biol. 2017; 167: 203–218. DOI: 10.1016/j.jsbmb.2016.11.020
38. Pandolfi F., Franza L., Mandolini C., Conti P. Immune Modulation by Vitamin D: Special Emphasis on Its Role in Prevention and Treatment of Cancer. Clin. Ther. 2017; 39: 884–893. DOI: 10.1016/j.clinthera.2017.03.012
39. Hansen C.M., Hamberg K.J., Binderup E., Binderup L. Seocalcitol (EB1089) A Vitamin D Analogue of Anti-cancer Potential. Background, Design, Synthesis, Pre-clinical and Clinical Evaluation. Cur. Pharm. Des. 2000; 6: 803–828. DOI: 10.2174/1381612003400371
40. Borel P., Caillaud D., Cano N.J. Vitamin D Bioavailability: State of the Art. Crit. Rev. Food Sci. Nutr. 2015; 55: 1193–1205. DOI: 10.1080/10408398.2012.688897
41. Khalid N., Kobayashi I., Wang Z., Neves M.A., Uemura K., Nakajima M., Nabetani H. Formulation of monodisperse oil-in-water emulsions loaded with ergocalciferol and cholecalciferol by microchannel emulsification: Insights of production characteristics and stability. Int. J. Food Sci. Technol. 2015; 50: 1807–1814. DOI: 10.1111/ijfs.12832
42. Li Q., Liu C.-G., Huang Z.-H., Xue F.-F. Preparation and Characterization of Nanoparticles Based on Hydrophobic Alginate Derivative as Carriers for Sustained Release of Vitamin D3. J. Agric. Food Chem. 2011; 59: 1962–1967. DOI: 10.1021/jf1020347
43. Grossmann R.E., Tangpricha V. Evaluation of vehicle substances on vitamin D bioavailability: A systematic review. Mol. Nutr. Food Res. 2010; 54: 1055–1061. DOI: 10.1002/mnfr.200900578
44. Coelho I.M.G., de Andrade L.D., Saldanha L., Diniz E.T., Griz L., Bandeira F. Bioavailability of vitamin D3 in non-oily capsules: The role of formulated compounds and implications for intermittent replacement. Arq. Bras. Endocrinol. Metab. 2010; 54: 239–243. DOI: 10.1590/S0004–27302010000200022
45. Salvia-Trujillo L., Fumiaki B., Park Y., McClements D.J. The influence of lipid droplet size on the oral bioavailability of vitamin D2 encapsulated in emulsions: An in vitro and in vivo study. Food Funct. 2017; 8: 767–777. DOI: 10.1039/C6FO01565D
46. Schoener AL, Zhang R, Lv S, Weiss J, McClements DJ. Fabrication of plant-based vitamin D-fortified nanoemulsions: influence of carrier oil type on vitamin bioaccessibility. Food Funct. 2019 Apr 1; 10 (4): 1826–1835. DOI: 10.1039/c9fo00116f. Epub 2019 Mar 15. PMID: 30874272
47. Salvia-Trujillo L., Fumiaki B., Park Y., McClements D.J. The influence of lipid droplet size on the oral bioavailability of vitamin D2 encapsulated in emulsions: An in vitro and in vivo study. Food Funct. 2017; 8: 767–777. DOI: 10.1039/C6FO01565D
48. Doskina E.V. The role of various forms of vitamin D in the treatment of patients with its deficiency (clinical case) // Endocrinology: news, opinions, training. 2021; 10 (2): 123–129. DOI: https://doi.org/10.33029/2304-9529-2021-10-2-123-129
Review
For citations:
Vodolazkaya A.N., Orlova S.V., Batysheva Т.Т., Nikitina Е.А., Balashova V.B., Prokopenko E.V. Factors affecting the bioavailability of vitamin D. Medical alphabet. 2023;(29):55-60. (In Russ.) https://doi.org/10.33667/2078-5631-2023-29-55-60