

Pharmacological correction of cognitive status of patients with post-COVID syndrome
https://doi.org/10.33667/2078-5631-2023-21-7-12
Abstract
Objective. To study influence of Mexidol® and Mexidol® FORTE 250 on cognitive status of patients with post-COVID syndrome.
Material and methods. We examined 112 patients aged 24–60 years (55 men and 57 women) who were divided into tho groups. The main group consisted of 76 patients with confirmed SARS-CoV‑2 NEW coronavirus infection having symptoms that served as the basis for the diagnosis of post-COVID syndrome. The control group consisted of 36 people who were not ill with coronavirus infection. Patients underwent neurological and general somatic examination. To study cognitive functions, we used the Mini Mental State Examination (MMSE) and the Frontal Assessment Batter (FAB). Memory was evaluated according to results of ‘the Memory’ subtest of the MMSE, the 10-word test and tests of visual memory. The level of attention was studied using the Schulte tables and the word fluency test; visual-spatial functions were evaluated using the clock-drawing test. To correct the identified disorders, Mexidol® was used according to the scheme: 500 mg once daily intravenously for 14 days, followed by Mexidol® FORTE 250 750 mg per day orally (250 mg three times a day) for 2 months.
Results. Patients with post-COVID syndrome were characterized by cognitive heterogeneity: mild and moderate cognitive impairments prevailed in the structure of cognitive disorders. The course of treatment with Mexidol® led to decrease in the severity of cognitive symptoms of post-COVID syndrome. The high efficacy and safety of long-term sequential therapy with Mexidol® (injections followed by tablets of Mexidol® FORTE 250) have been shown.
About the Authors
L. V. ChichanovskayaRussian Federation
Chichanovskaya Lesya V., DM Sci (habil.), professor, head of Dept of Neurology, Rehabilitation and Neurosurgery
Tver
T. A. Slyusar
Russian Federation
Slyusar Tatyana A., DM Sci (habil.), Prof.
Tver
Yu. V. Abramenko
Russian Federation
Abramenko Yulia V., PhD Med, associate professor
Tver
T. M. Nekrasova
Russian Federation
Nekrasova Tatyana M., PhD Med, associate professor
Tver
I. N. Slyusar
Russian Federation
Slyusar Irina N., medical psychologist
Tver
References
1. Zhou H, Lu S, Chen J, Wei N, Wang D, Lyu H, Shi C, Hu S. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res. 2020 Oct; 129: 98-102. Epub 2020 Jun 30. PMID: 32912598; PMCID: PMC 7324344. SM. DOI: 10.1016/j.jpsychires.2020.06.022.
2. Miskowiak KW, Johnsen S, Sattler, Nielsen S, Kunalan K, Rungby J, Lapperre T, Porsberg CM Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables, European Neuropsychopharmacology, 2021; V. 46: 39-48, https://doi.org/10.1016/j.euroneuro.2021.03.
3. Putilina MV, Teplova NV, Poryadin GV. Prospects for pharmacological adaptation of neurovascular unit in conditions of neurotropic viral infection. S. S. Korsakov Journal of Neurology and Psychiatry. 2021; 121 (5): 89-95. (In Russ.) https://doi.org/10.17116/jnevro202112105189
4. Devita M, Bordignon A, Sergi G. et al. The psychological and cognitive impact of Covid-19 on individuals with neurocognitive impairments: research topics and remote intervention proposals. Aging Clin Exp Res 33, 733-736 (2021). https://doi.org/10.1007/s40520-020-01637-6
5. Alnefeesi Y, Siegel A, Lui LMW, Teopiz KM, Ho RCM, Lee Y, Nasri F, Gill H, Lin K, Cao B, Rosenblat JD and McIntyre RS (2021) Impact of SARS-CoV-2 Infection on Cognitive Function: A Systematic Review. Front. Psychiatry. 11: 621773. DOI: 10.3389/fpsyt.2020.621773
6. Gromova OA, Torshin IYu, Semenov VA, Putilina MV, Chuchalin AG. Direct and indirect neurological manifestations of COVID-19. S. S. Korsakov Journal of Neurology and Psychiatry. 2020; 120 (11): 11-21. (In Russ.) https://doi.org/10.17116/jnevro202012011111
7. Suleyman G, Fadel RA, Malette KM et al. Clinical Characteristics and Morbidity Associated with Coronavirus Disease 2019 in a Series of Patients in Metropolitan Detroit. JAMA Netw Open. 2020; 3 (6): e2012270. DOI: 10.1001/jamanetworkopen.2020.12270.
8. Putilina MV Comorbid patient in real clinical practice. Consilium Medicum. 2017; Vol. 19, 2: 71-79.
9. Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I, Kritas SK. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVID-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020 Mar 14; 34 (2). PMID: 32171193. DOI: 10.23812/conti-e.
10. Putilina MV, Grishin DV. SARS-CoV-2 (COVID-19) as a predictor of neuroinflammation and neurodegeneration: potential therapy strategies. S. S. Korsakov Journal of Neurology and Psychiatry. 2020; 120 (8): 58-64.
11. Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I, Kritas SK. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVID-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020 Mar 14; 34 (2). PMID: 32171193. DOI: 10.23812/conti-e.
12. Putilina MV The role of endothelial dysfunction in cerebrovascular diseases. The Doctor; 2012; 7: 24-28.
13. Carod-Artal FJ. Neurological complications of coronavirus and COVID-19. Complicaciones neurológicas por coronavirus y COVID-19. Rev Neurol. 2020; 70 (9): 311-322. DOI: 10.33588/rn.7009.2020179.
14. Devita M, Bordignon A, Sergi G et al. The psychological and cognitive impact of Covid-19 on individuals with neurocognitive impairments: research topics and remote intervention proposals. Aging Clin Exp Res 33, 733-736 (2021). https://doi.org/10.1007/s40520-020-01637-6
15. Alnefeesi Y, Siegel A, Lui LMW, Teopiz KM, Ho RCM, Lee Y, Nasri F, Gill H, Lin K, Cao B, Rosenblat JD and McIntyre RS (2021) Impact of SARS-CoV-2 Infection on Cognitive Function: A Systematic Review. Front. Psychiatry 11: 621773. DOI: 10.3389/fpsyt.2020.621773.
16. Loebel M, Grabowski P, Heidecke H, Bauer S, Hanitsch LG, Wittke K, Meisel C, Reinke P, Volk HD, Fluge Ø, Mella O, Scheibenbogen C. Antibodies to β adrenergic and muscarinic cholinergic receptors in patients with chronic fatigue syndrome. Brain Behav Immun. 2016 Feb; 52: 32-39. Epub 2015 Sep 21. PMID: 26399744. DOI: 10.1016/j.bbi.2015.09.013.
17. Kovalchuk VV, Ershova II, Molodovskaya NV. Possibilities of improving the effectiveness of therapy in patients with chronic cerebral ischemia against the background of COVID-19. S. S. Korsakov Journal of Neurology and Psychiatry. 2021; 121 (3 ed. 2):60-66. (In Russ.) https://doi.org/10.17116/jnevro202112103260
18. Rumyantseva SA, Kravchuk AA, Silina EV. Antioxidants in cerebrovascular disease therapy. Attending Physician. 2006; 5: 42-47. (In Russ.).
19. Smirnova IN, Fedorova TN, Tanashyan MM, Suslinа ZA. Clinical efficacy and antioxidant activity of mexidol in chronic cerebrovascular diseases. Atmosphere. Nervous Diseases. 2006; 1: 33-36. (In Russ.).
20. Voronina TA Pioneer antioxidant neuroprotection. 20 years in clinical practice. Russian Medical Journal. 2016; 7: 434-438. (In Russ.).
21. Duma SN. Possibilities of antioxidant therapy in asthenia and cognitive deficits in elderly patients with chronic brain ischemia. Therapeutic Archive. 2013; 12: 100-105. (In Russ.).
22. Shchulkin AV Effect of Mexidol on the development of the phenomenon of the neuronal excitotoxicity in vitro. S. S. Korsakov Journal of Neurology and Psychiatry. 2012; 2: 35-39 (In Russ.).
23. Drozdova TV, Fitmova OA, Fitmova AA. The Role of Mexidol in the treatment of moderate cognitive disorders in the framework of the manifestations of chronic cerebrovascular insufficiency. Pharmateca. 2012; 14: 97-103.
24. Shchulkin AV A modern concept of antihypoxic and antioxidant effects of Mexidol. S. S. Korsakov Journal of Neurology and Psychiatry. 2018; 12-2: 87-93 (In Russ.). DOI: 10.17116/jnevro201811812287.
25. Fedin AI, Zakhаrov VV, Tanashyan MM, Chukanova EI, Madzhidova EN, Shepankevich LA, Ostroumova OD. Results of an international multicenter, randomized, double blind, placebo-controlled study assessing the efficacy and safety of sequential therapy with Mexidol and Mexidol FORTE 250 in patients with chronic brain ischemia (MEMO). S. S. Korsakov Journal of Neurology and Psychiatry. 2021; 121 (11): 7-16 (In Russ.).
26. Chukanova EI, Chukanova AS. Efficiency and safety of drug Mexidol Forte 250 as part of successive therapy in patients with chronic brain ischemia. S. S. Korsakov Magazine of Neurology and Psychiatry. 2019; 119 (9): 39-45 (In Russ.).
27. Voronina TA Mexidol. Main neuropsychotropic effects and action mechanism. Pharmateka. 2009; 180 (6): 1-4. (In Russ.).
28. Voronina TA Antioxidants / antihypoxants: the missing puzzle piece in effective pathogenetic therapy for COVID-19 Infectious diseases, 2020, 18, 2, 97-102. DOI: 10.20953/1729-9225-2020-2-97-102
29. Antipenko EA, Derugina AV, Gustov AV. The system stress-limiting action of mexidol in chronic cerebral ischemia. S. S. Korsakov Journal of Neurology and Psychiatry. 2016; 116 (4): 28-31 (In Russ.).
30. Kalinkin MN, Yakovlev NA, Slyusar TA Chronic cerebral ischemia in old age (pathogenetic and clinical aspects). Tver, 2016. 226. (In Russ.).
31. Burdakov VV, Krasnykh DV The efficacy and safety of ethyl methyl hydroxypyridine succinate used as part of sequential therapy in patients with chronic cerebral ischemia. Neurology, Neuropsychiatry, Psichosomatics. 2020; 12 (1): 56-60 (In Russ.).
32. Voskresenskaya ON, Zakharova NB, Tarasova YuS, et al. Possible mechanisms of cognitive dysfunction in patients with chronic forms of cerebrovascular diseases. Neurology, Neuropsychiatry, Psichosomatics. 2018; 10 (1): 32-6 (In Russ.). Doi: 10.14412/2074-2711-2018-1-32-36.
33. Folstein MF, Folstein SE, McHugh PR. Mini-mental state. A practical method for grading the cognitive state of patient for the clinician. Journal of Psychiatric Research. 1975. 3 (12). P. 189-198.
34. Dubois B. The FAB: a frontal assessment battery at bedside. Neurology. 2000. No. 11 (55). P. 1621-1626.
35. Лурия А. Р. Высшие корковые функции. М., 2000. Luria AR. Higher cortical functions. M., 2000 (In Russ.).
36. Bleicher VM, Kruk IV, Bokov SN. Methods for the study of attention and psychomotor reactions. Clinical pathopsychology. M., 2002 (In Russ.).
37. Lezak MD Neuropsychology assessment. NY: University Press, 1983. 768 p.
38. Захаров В. В., Яхно Н. Н. Нарушения памяти. М.: ГЭОТАРМЕД, 2003. Zakharov VV, Yakhno NN. Memory disorders. M.: GEOTARMED, 2003 (In Russ.).
39. Zakharov VV. Evolution of cognitive deficite: mild and moderate cognitive impairments. Neurology, Neuropsychiatry, Psychosomatics. 2012; 4 (2): 16-21. (In Russ.).
40. Gauthier S, Touchon J Subclassification of mild cognitive impairment in research and in clinical practice. Alzheimer's Dis Relat Dis Ann. 2004: 61-70.
41. Cook IA Cognitive and physiologic correlates of subclinical structural brain disease in elderly healthy control sudctjects. Arch. Neurol. 2002. 59: 1612-1620.
42. Левин О. С., Васенина Е. Е. Диагностика и лечение когнитивных нарушений. Учебное пособие. http://irbis.rmapo.ru/uploadsfilesforirbis/44d240b56bb6555d8235b306e3487073.pdf
Review
For citations:
Chichanovskaya L.V., Slyusar T.A., Abramenko Yu.V., Nekrasova T.M., Slyusar I.N. Pharmacological correction of cognitive status of patients with post-COVID syndrome. Medical alphabet. 2023;(21):7-12. (In Russ.) https://doi.org/10.33667/2078-5631-2023-21-7-12