

Роль липотропных факторов в коррекции метаболических нарушений у женщин в перименопаузальный период
https://doi.org/10.33667/2078-5631-2023-19-7-15
Аннотация
У женщин в период перименопаузы выявляются изменения метаболических параметров, такие как увеличение массы тела, запускающее каскад патологических реакций, которые приводят к формированию метаболических нарушений (липидного, углеводного обменов) и эндотелиальной дисфункции, в развитии которых определенную роль играет дефицит половых гормонов при наступлении климактерия. Имеется взаимосвязь гормональных сдвигов и увеличение количества абдоминального и/или висцерального жира, что сопровождается ослаблением процессов окисления в жировой ткани, снижением расхода энергии и предрасположенностью к развитию метаболического синдрома. В качестве нутритивной коррекции целесообразно введение в рацион липотропных веществ, способствующих катализации распада жиров и обеспечивающих процессы гидроксилирования и метилирования токсических веществ в печени, таких как метионин, инозитол и холин. Каждый из липотропных веществ влияет на мобилизацию жиров, а их комбинация может обеспечить синергетический эффект и увеличить естественную метаболическую функцию печени.
Об авторах
С. В. ОрловаРоссия
Орлова Светлана Владимировна, д. м. н., проф., зав. кафедрой диетологиии клинической нутрициологии, главный научный сотрудник
Москва
Е. А. Никитина
Россия
Никитина Елена Александровна, к. м. н., доцент кафедры диетологии и клинической нутрициологии, научный сотрудник
Москва
Список литературы
1. Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, Sherman S, Sluss PM, de Villiers TJ; STRAW + 10 Collaborative Group. Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging. J. Clin. Endocrinol. Metab. 2012 Apr; 97 (4): 1159–68. DOI: 10.1210/jc.2011–3362
2. Zhang C, Zhao M, Li Z, Song Y. Follicle-Stimulating Hormone Positively Associates with Metabolic Factors in Perimenopausal Women. Int J. Endocrinol. 2020 Nov 12; 2020: 7024321. DOI: 10.1155/2020/7024321
3. El Khoudary SR, Greendale G, Crawford SL, Avis NE, Brooks MM, Thurston RC, Karvonen-Gutierrez C, Waetjen LE, Matthews K. The menopause transition and women’s health at midlife: a progress report from the Study of Women’s Health Across the Nation (SWAN). Menopause. 2019 Oct; 26 (10): 1213–1227. DOI: 10.1097/GME.0000000000001424
4. Greendale GA, Sternfeld B, Huang M, Han W, Karvonen-Gutierrez C, Ruppert K, Cauley JA, Finkelstein JS, Jiang SF, Karlamangla AS. Changes in body composition and weight during the menopause transition. JCI Insight. 2019 Mar 7; 4 (5): e124865. DOI: 10.1172/jci.insight.124865
5. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM, Nelson SA, Nichol G, Orenstein D, Wilson PW, Woo YJ; American Heart Association Advocacy Coordinating Committee; Stroke Council; Council on Cardiovascular Radiology and Intervention; Council on Clinical Cardiology; Council on Epidemiology and Prevention; Council on Arteriosclerosis; Thrombosis and Vascular Biology; Council on Cardiopulmonary; Critical Care; Perioperative and Resuscitation; Council on Cardiovascular Nursing; Council on the Kidney in Cardiovascular Disease; Council on Cardiovascular Surgery and Anesthesia, and Interdisciplinary Council on Quality of Care and Outcomes Research. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011 Mar 1; 123 (8): 933-–44. DOI: 10.1161/CIR.0b013e31820a55f5
6. Genazzani AR, Gambacciani M. Effect of climacteric transition and hormone replacement therapy on body weight and body fat distribution. Gynecol Endocrinol. 2006 Mar; 22 (3): 145–50. DOI: 10.1080/09513590600629092
7. Euler U. S. Über die Spezifische Blutdrucksenkende Substanz des Menschlichen Prostata- und Samenblasensekretes. Klin Wochenschr 14, 1182–1183 (1935). https://doi.org/10.1007/BF01778029
8. Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохимия человека: В 2 т.; пер. с англ. М.: Мир, 1993. Т. 1 384 с.
9. Newberne PM. Lipotropic factors and oncogenesis. Adv Exp. Med. Biol. 1986; 206: 223–51. DOI: 10.1007/978–1–4613–1835–4_18
10. Bizzarri M, Fuso A, Dinicola S, Cucina A, Bevilacqua A. Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease. Expert Opin Drug Metab Toxicol. 2016 Oct; 12 (10): 1181–96. DOI: 10.1080/17425255.2016.1206887
11. Лиманова О. А., Громова О. А., Торшин И. Ю. и др. Систематический анализ молекулярно-физиологических эффектов мио-инозитола: данные молекулярной биологии, экспериментальной и клинической медицины. Эффективная фармакотерапия. 2013; 28: 32–41.
12. Caputo M, Bona E, Leone I, Samà MT, Nuzzo A, Ferrero A, Aimaretti G, Marzullo P, Prodam F. Inositols and metabolic disorders: From farm to bedside. J. Tradit. Complement. Med. 2020 Mar 24; 10 (3): 252–259. DOI: 10.1016/j.jtcme.2020.03.005. PMID: 32670820; PMCID: PMC 7340869.
13. Reddy NR, Sathe SK, Salunkhe DK. Phytates in legumes and cereals. Adv Food Res. 1982; 28: 1–92. DOI: 10.1016/s0065–2628(08)60110-x
14. Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr Res Rev. 2010 Jun; 23 (1): 65–134. DOI: 10.1017/S 0954422410000041.
15. Clements RS Jr, Darnell B. Myo-inositol content of common foods: development of a high-myo-inositol diet. Am. J. Clin. Nutr. 1980 Sep; 33 (9): 1954–67. DOI: 10.1093/ajcn/33.9.1954
16. Schlemmer U, Jany KD, Berk A, Schulz E, Rechkemmer G. Degradation of phytate in the gut of pigs – pathway of gastro-intestinal inositol phosphate hydrolysis and enzymes involved. Arch Tierernahr. 2001; 55 (4): 255–80. DOI: 10.1080/17450390109386197
17. Holub BJ. Metabolism and function of myo-inositol and inositol phospholipids. Annu Rev Nutr. 1986; 6: 563–97. DOI: 10.1146/annurev.nu.06.070186.003023
18. Bevilacqua A, Bizzarri M. Inositols in Insulin Signaling and Glucose Metabolism. Int J Endocrinol. 2018 Nov 25; 2018: 1968450. DOI: 10.1155/2018/1968450
19. Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006 Oct 12; 443 (7112): 651–7.
20. Paul C, Laganà AS, Maniglio P, Triolo O, Brady DM. Inositol’s and other nutraceuticals’ synergistic actions counteract insulin resistance in polycystic ovarian syndrome and metabolic syndrome: state-of-the-art and future perspectives. Gynecol. Endocrinol. 2016 Jun; 32 (6): 431–8. DOI: 10.3109/09513590.2016.1144741
21. Santamaria A, Giordano D, Corrado F, Pintaudi B, Interdonato ML, Vieste GD, Benedetto AD, D’Anna R. One-year effects of myo-inositol supplementation in postmenopausal women with metabolic syndrome. Climacteric. 2012 Oct; 15 (5): 490–5. DOI: 10.3109/13697137.2011.631063
22. Celentano C, Matarrelli B, Mattei PA, Pavone G, Vitacolonna E, Liberati M. Myo-Inositol Supplementation to Prevent Gestational Diabetes Mellitus. Curr Diab Rep. 2016 Mar; 16 (3): 30. DOI: 10.1007/s11892–016–0726–6
23. Zheng X, Liu Z, Zhang Y, Lin Y, Song J, Zheng L, Lin S. Relationship Between Myo-Inositol Supplementary and Gestational Diabetes Mellitus: A Meta-Analysis. Medicine (Baltimore). 2015 Oct; 94 (42): e1604. DOI: 10.1097/MD.0000000000001604
24. Genazzani AD. Inositol as putative integrative treatment for PCOS. Reprod Biomed Online. 2016 Dec; 33 (6): 770–780. DOI: 10.1016/j.rbmo.2016.08.024
25. Giordano D, Corrado F, Santamaria A, Quattrone S, Pintaudi B, Di Benedetto A, D’Anna R. Effects of myo-inositol supplementation in postmenopausal women with metabolic syndrome: a perspective, randomized, placebo-controlled study. Menopause. 2011 Jan; 18 (1): 102–4. DOI: 10.1097/gme.0b013e3181e8e1b1
26. Kim JI, Kim JC, Kang MJ, Lee MS, Kim JJ, Cha IJ. Effects of pinitol isolated from soybeans on glycaemic control and cardiovascular risk factors in Korean patients with type II diabetes mellitus: a randomized controlled study. Eur. J. Clin. Nutr. 2005 Mar; 59 (3): 456–8. DOI: 10.1038/sj.ejcn.1602081
27. Tabrizi R, Ostadmohammadi V, Lankarani KB, Peymani P, Akbari M, Kolahdooz F, Asemi Z. The effects of inositol supplementation on lipid profiles among patients with metabolic diseases: a systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis. 2018 May 24; 17 (1): 123. DOI: 10.1186/s12944–018–0779–4
28. Shokrpour M, Foroozanfard F, Afshar Ebrahimi F, Vahedpoor Z, Aghadavod E, Ghaderi A, Asemi Z. Comparison of myo-inositol and metformin on glycemic control, lipid profiles, and gene expression related to insulin and lipid metabolism in women with polycystic ovary syndrome: a randomized controlled clinical trial. Gynecol Endocrinol. 2019 May; 35 (5): 406–411. DOI: 10.1080/09513590.2018.1540570
29. Лиманова О. А., Торшин И. Ю., Сардарян И. С., Калачева А. Г.,, Юдина Н. В., Егорова Е. Ю., Белинская А. Ю., Гришина Т. Р., Громов А. Н., Федотова Л. Э., Рудаков К. В., Громова О. А. Обеспеченность микронутриентами и женское здоровье: интеллектуальный анализ клинико-эпиде- миологических данных. Вопросы гинекологии, акушерства и перинатологии. 2014; 13 (2): 5–15.
30. Громова О. А., Лиманова О. А., Торшин И. Ю. Систематический анализ фундаментальных и клинических исследований как обоснование необходимости совместног использования эстрогенсодержащих препаратов с препаратами магния и пиридоксина. Акушерство, гинекология и репродукция. 2013; 7 (3): 35–50.
31. Dworschák E. Nonenzyme browning and its effect on protein nutrition. Crit Rev Food Sci Nutr. 1980; 13 (1): 1–40. DOI: 10.1080/10408398009527292
32. Bouckenooghe T, Remacle C, Reusens B. Is taurine a functional nutrient? Curr Opin Clin Nutr Metab Care. 2006 Nov; 9 (6): 728 33. DOI: 10.1097/01.mco.0000247469.26414.55
33. Shi YR, Gao L, Wang SH, Bu DF, Zhang BH, Jiang HF, Pang YZ, Tang CS. Inhibition of taurine transport by high concentration of glucose in cultured rat cardiomyocytes. Metabolism. 2003 Jul; 52 (7): 827–33. DOI: 10.1016/s0026–0495(03)00067–2
34. Сизова О. С., Ших Е. В. Возможности таурина в коррекции гепатотоксического действия противогрибковых препаратов у больных онихомикозом. Медицинский совет. Гастроэнтерология. 2012; 9: 30–35.
35. Колосова М. А., Плетень А. П. Возникновение патологий, связанных с нарушением реакций метилирования в метаболических процессах (обзор). Universum: медицина и фармакология: электрон. научн. журн. 2023; 7 (100). URL: https://7universum.com/ru/med/archive/item/1575
36. Monteiro JP, Wise C, Morine MJ, Teitel C, Pence L, Williams A, McCabe-Sellers B, Champagne C, Turner J, Shelby B, Ning B, Oguntimein J, Taylor L, Toennessen T, Priami C, Beger RD, Bogle M, Kaput J. Methylation potential associated with diet, genotype, protein, and metabolite levels in the Delta Obesity Vitamin Study. Genes Nutr. 2014 May; 9 (3): 403. DOI: 10.1007/s12263–014–0403–9
37. Dominguez-Salas P, Moore SE, Cole D, da Costa KA, Cox SE, Dyer RA, Fulford AJ, Innis SM, Waterland RA, Zeisel SH, Prentice AM, Hennig BJ. DNA methylation potential: dietary intake and blood concentrations of one-carbon metabolites and cofactors in rural African women. Am. J. Clin. Nutr. 2013 Jun; 97 (6): 1217–27. DOI: 10.3945/ajcn.112.048462
38. Fischer LM, da Costa KA, Kwock L, Galanko J, Zeisel SH. Dietary choline requirements of women: effects of estrogen and genetic variation. Am. J. Clin. Nutr. 2010 Nov; 92 (5): 1113–9. DOI: 10.3945/ajcn.2010.30064
39. Liflyandsky V. G. General characteristics of vitamins and minerals. Choline. // Vitamins and minerals. From A to Z. – St. Petersburg: Neva, 2006. P. 115–119.
40. Zeisel SH. Choline: an essential nutrient for humans. Nutrition. 2000 Jul-Aug; 16 (7–8): 669–71. DOI: 10.1016/s0899–9007(00)00349-x
41. Fischer LM, daCosta KA, Kwock L, Stewart PW, Lu TS, Stabler SP, Allen RH, Zeisel SH. Sex and menopausal status influence human dietary requirements for the nutrient choline. Am J Clin Nutr. 2007 May; 85 (5): 1275–85. DOI: 10.1093/ajcn/85.5.1275
42. Matsumoto M, Hada N, Sakamaki Y, Uno A, Shiga T, Tanaka C, Ito T, Katsume A, Sudoh M. An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis. Int J Exp Pathol. 2013 Apr; 94 (2): 93–103. DOI: 10.1111/iep.12008
43. Wallace TC, Blusztajn JK, Caudill MA, Klatt KC, Natker E, Zeisel SH, Zelman KM. Choline: The Underconsumed and Underappreciated Essential Nutrient. Nutr Today. 2018 Nov-Dec; 53 (6): 240–253. DOI: 10.1097/NT.0000000000000302
44. Kim S, Fenech MF, Kim PJ. Nutritionally recommended food for semi- to strict vegetarian diets based on large-scale nutrient composition data. Sci Rep. 2018 Mar 12; 8 (1): 4344. DOI: 10.1038/s41598–018–22691–1
45. Единые санитарно-эпидемиологические и гигиенические требования к продукции (товарам), подлежащей санитарно-эпидемиологическому надзору (контролю) Г II. Р 1. Требования безопасности и пищевой ценности пищевых продуктов (утв. Решением Комиссии таможенного союза от 28 мая 2010 года N 299).
46. Dudman NP, Guo XW, Gordon RB, Dawson PA, Wilcken DE. Human homocysteine catabolism: three major pathways and their relevance to development of arterial occlusive disease. J Nutr. 1996 Apr; 126 (4 Suppl): 1295S‑300S. DOI: 10.1093/jn/126.suppl_4.1295S
47. Noga AA, Zhao Y, Vance DE. An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins. J Biol Chem. 2002 Nov 1; 277 (44): 42358–65. DOI: 10.1074/jbc.M204542200
48. Yao ZM, Vance DE. Reduction in VLDL, but not HDL, in plasma of rats deficient in choline. Biochem Cell Biol. 1990 Feb; 68 (2): 552–8. DOI: 10.1139/o90–079
49. Nakatsuka A, Matsuyama M, Yamaguchi S, Katayama A, Eguchi J, Murakami K, Teshigawara S, Ogawa D, Wada N, Yasunaka T, Ikeda F, Takaki A, Watanabe E, Wada J. Insufficiency of phosphatidylethanolamine N-methyltransferase is risk for lean non-alcoholic steatohepatitis. Sci Rep. 2016 Feb 17; 6: 21721. DOI: 10.1038/srep21721.
50. Vance DE. Physiological roles of phosphatidylethanolamine N-methyltransferase. Biochim Biophys Acta. 2013 Mar; 1831 (3): 626–32. DOI: 10.1016/j.bbalip.2012.07.017
51. Piras IS, Raju A, Don J, Schork NJ, Gerhard GS, DiStefano JK. Hepatic PEMT Expression Decreases with Increasing NAFLD Severity. Int J. Mol. Sci. 2022 Aug 18; 23 (16): 9296. DOI: 10.3390/ijms23169296
52. Bale G, Vishnubhotla RV, Mitnala S, Sharma M, Padaki RN, Pawar SC, Duvvur RN. Whole-Exome Sequencing Identifies a Variant in Phosphatidylethanolamine N-Methyltransferase Gene to be Associated With Lean-Nonalcoholic Fatty Liver Disease. J. Clin. Exp. Hepatol. 2019 Sep-Oct; 9 (5): 561–568. DOI: 10.1016/j.jceh.2019.02.001
53. da Costa KA, Corbin KD, Niculescu MD, Galanko JA, Zeisel SH. Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups. FASEB J. 2014 Jul; 28 (7): 2970–8. DOI: 10.1096/fj.14–249557
54. Dong H, Wang J, Li C, Hirose A, Nozaki Y, Takahashi M, Ono M, Akisawa N, Iwasaki S, Saibara T, Onishi S. The phosphatidylethanolamine N-methyltransferase gene V175M single nucleotide polymorphism confers the susceptibility to NASH in Japanese population. J. Hepatol. 2007 May; 46 (5): 915–20. DOI: 10.1016/j.jhep.2006.12.012
55. Song J, da Costa KA, Fischer LM, Kohlmeier M, Kwock L, Wang S, Zeisel SH. Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD). FASEB J. 2005 Aug; 19 (10): 1266–71. DOI: 10.1096/fj.04–3580com
56. Resseguie ME, da Costa KA, Galanko JA, Patel M, Davis IJ, Zeisel SH. Aberrant estrogen regulation of PEMT results in choline deficiency-associated liver dysfunction. J. Biol. Chem. 2011 Jan 14; 286 (2): 1649–58. DOI: 10.1074/jbc.M110.106922
57. Guerrerio AL, Colvin RM, Schwartz AK, Molleston JP, Murray KF, Diehl A, Mohan P, Schwimmer JB, Lavine JE, Torbenson MS, Scheimann AO. Choline intake in a large cohort of patients with nonalcoholic fatty liver disease. Am. J. Clin. Nutr. 2012 Apr; 95 (4): 892–900. DOI: 10.3945/ajcn.111.020156
58. Yu D, Shu XO, Xiang YB, Li H, Yang G, Gao YT, Zheng W, Zhang X. Higher dietary choline intake is associated with lower risk of nonalcoholic fatty liver in normal-weight Chinese women. J. Nutr. 2014 Dec; 144 (12): 2034–40. DOI: 10.3945/jn.114.197533
59. Mazidi M, Katsiki N, Mikhailidis DP, Banach M. Adiposity May Moderate the Link Between Choline Intake and Non-alcoholic Fatty Liver Disease. J Am Coll Nutr. 2019 Sep-Oct; 38 (7): 633–639. DOI: 10.1080/07315724.2018.1507011
60. Ueland PM. Choline and betaine in health and disease. J Inherit Metab Dis. 2011 Feb; 34 (1): 3–15. DOI: 10.1007/s10545–010–9088–4
61. Zeisel SH. Nutritional importance of choline for brain development. J Am Coll Nutr. 2004 Dec; 23 (6 Suppl): 621S‑626S. DOI: 10.1080/07315724.2004.10719433
62. Hanin I, Ansell GB. Lecithin: Technological, Biological, and Therapeutic Aspects. Plenum Press; NY: 1987. P. 180–181.
63. Louisiana State University Pennington Biomedical Research Center studies. Eggs promote weight loss and help close nutrient consumption gap. 2007. Available at: http://www.eurekalert.org/pub_releases/2007–05/epr-epw042707.php; accessed on 02.05.2007.
64. Yao ZM, Vance DE. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J. Biol. Chem. 1988 Feb 25; 263 (6): 2998–3004. https://pubmed.ncbi.nlm.nih.gov/3343237/
65. Kenney JL, Carlberg KA. The effect of choline and myo-inositol on liver and carcass fat levels in aerobically trained rats. Int J. Sports Med. 1995 Feb; 16 (2): 114–6. DOI: 10.1055/s‑2007–972975
66. Le Donne M, Metro D, Alibrandi A, Papa M, Benvenga S. Effects of three treatment modalities (diet, myoinositol or myoinositol associated with D-chiro-inositol) on clinical and body composition outcomes in women with polycystic ovary syndrome. Eur. Rev Med. Pharmacol Sci. 2019 Mar; 23 (5): 2293–2301. DOI: 10.26355/eurrev_201903_17278
67. Buchman AL. The addition of choline to parenteral nutrition. Gastroenterology. 2009 Nov; 137 (5 Suppl): S 119–28. DOI: 10.1053/j.gastro.2009.08.010
Рецензия
Для цитирования:
Орлова С.В., Никитина Е.А. Роль липотропных факторов в коррекции метаболических нарушений у женщин в перименопаузальный период. Медицинский алфавит. 2023;(19):7-15. https://doi.org/10.33667/2078-5631-2023-19-7-15
For citation:
Orlova S.V., Nikitina E.A. The role of lipotropic factors in the correction of metabolic disorders in women during the perimenopausal period. Medical alphabet. 2023;(19):7-15. (In Russ.) https://doi.org/10.33667/2078-5631-2023-19-7-15