Preview

Medical alphabet

Advanced search

Sustainability of spatial QRS-T angle of vectorcardiogram to filtration: a pilot study

https://doi.org/10.33667/2078-5631-2023-7-34-40

Abstract

Objective: to evaluate sustainability of spatial QRS-T angle of vectorcardiogram to filtration.

Materials and methods: Vectorcardiographic records in Frank lead system obtained from 53 randomly included patients with sinus normocardia (28–80 years) were synthesized by means of special algorithm developed in our laboratory based on Bemmel’s matrix. The changes in P, Q, R, S, T amplitudes and in the values of spatial QRS-T angle were analysed at different modes of filtering (70 Гц, 40 Гц, 30 Гц) and without filtering.

Results: all of the filtration modes studied diminished the amplitudes of ventricular complex components while no significant changes in the values of spatial QRS-T angle were observed.

Conclusion: a new methodology for ECG and VCG parameters sustainability to signal processing (filtration) was developed and tested; the hypothesis about sustainability of spatial QRS-T angle of vectorcardiogram to filtration was approved. Taking into account that spatial QRS-T angle is known as a strong predictor of cardiac diseases, it seems perspective to be implemented in automatic ECG analysis algorythms.

About the Authors

M. E. Gasanova
E.I.Chazov National Medical Research Center for Cardiology of the Ministry of Health of Russia
Russian Federation

Gasanova M. E. — laboratory researcher



D. V. Drozdov
E.I.Chazov National Medical Research Center for Cardiology of the Ministry of Health of Russia
Russian Federation

Drozdov D. V. — PhD, head of the laboratory



I. L.  Kozlovskaya
E.I.Chazov National Medical Research Center for Cardiology of the Ministry of Health of Russia
Russian Federation

Kozlovskaya I. L. — P hD, research associate laboratory of ECG



E. SH. Kozhemyakina
E.I.Chazov National Medical Research Center for Cardiology of the Ministry of Health of Russia
Russian Federation

Kozhemyakina E.SH. — s oftware engineer 



References

1. Smulyan H. The computerized ECG: friend and foe. American journal of medicine. 2019 (132): 153–160.

2. Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology. Journal of the American College of Cardiology. 2007;49;10; 1109–1127.

3. Martinek R, Ladrova M, Sidikova M et al. Advanced Bioelectrical Signal Processing Methods: Past, Present and Future Approach — Part I: Cardiac Signals. Sensors (Basel). 2021(15): 5186–5192. doi: 10.3390/s21155186

4. Drozdov D. V. Neochevidnye prichiny diagnosticheskich oshibok v elektrocardiographii. [Unobvious sources of diagnostic errors in electrocardiography]. Moscow.”Medica”, 2014, 214p.

5. Wilson FN, MacLeod AG, Barker PS, Johnson FD. The determination and the significance of the areas of the ventricular deflections of the electrocardiogram. Amer. Heart J. 1934;10: 46–61.

6. Blinova E. V., Sakhnova T. A., Yurasova E. S. Diagnosticheskoe i prognosticheskoe znachenie ugla QRS-T [Diagnostic and prognostic value of QRS-T angle]. Terapevticheskui archiv [Clinical therapeutics]. 2020,9.85–93 p

7. Frolov A. V. Prostranstvennyi ugol QRS-T v ocenke riska zhizneugrozhayuschich aritmicheskich sobytii [Spatial QRS-T angle in risk-evaluation of life-threatening arrhythmic events].Kardiologiya Belarusi. 2020;5:620–628.

8. Sakhnova T.A, Blinova E. V., Saidova M. A. Znachenie prostranstvennogo ugla QRS-T dlya ocenki tyazhesti porazheniya serdtsa u bolnych arterialnoi gipertoniei [The value of spatial QRS-T angle as a marker of heart injury in arterial hypertension].2021;11:49–56.

9. Blinova E. V., Sakhnova T. A., Yurasova E. S. Prostranstvennyi ugol QRS-T kak pokazatel tyazhesti porazheniya serdtsa u bolnych arterialnoi gipertoniei [Spatial QRS-T angle for heart injury assessment in arterial hypertension]

10. Sakhnova T. A., Martynyuk T. V. Prostranstvennyi ugol QRS-T I zheludochkovyi gradient pri raznych formah prekapillarnoi legochnoi hypertensii [Spatial QRS-T angle and ventricular gradient in different types of pulmonary hypertension]. Kardiologicheskyi vestnik [The bulletin of Cardiology]. 2019;1; 40–45.

11. Sakhnova T. A., Dozenko Yu.V., Sergienko V. B. et al. Factory associirovannye s uvelicheniem prostranstvennogo I frontalnogo ugla QRS-T u bolnych infarktom myocardia nizhnei lokaisacii [Factors, associated with spatial and frontal QRS-T angle growth in patients with inferior myocardial infarction]. Cardiology. 2020; 11: 76–83.

12. Macfarlane P. W. Lead systems. — In: Comprehensive Electrocardiology. Macfarlane P. W., Oosterom A., Pahlm O., Kligfield P., JanseM., Camm J. (eds), Springer; 2010, p. 375–426.

13. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

14. Ripley B. D. et al. The R project in statistical computing //MSOR Connections. The newsletter of the LTSN Maths, Stats & OR Network. 2001; 1: 23–25.

15. Petri A., Sabin K. Naglyadnaya medicinskaya statistika; uchebnoe posobie [Visual medical statistics: manual]. Moscow, GEOTARMedia.2021, 232p.

16. Lagutin MB. Naglyadnaya medicinskaya statistika; uchebnoe posobie [Visual medical statistics: manual]. Moscow, Laboratory of Knowledge. 2022, 472p.

17. Guldenring D, Finlay DD, Bond RR. The effects of 40 Hz low-pass filtering on the spatial QRS-T angle. Computing in Cardiology Conference (CinC), 2016: 93–96.

18. Guldenring D, Finlay DD, Bond RR, Kennedy A. The effects of 0.67 Hz high-pass filtering on the spatial QRS-T angle. Computing in Cardiology (CinC). 2017:. 1–4. doi: 10.22489/CinC.2017.223–392.

19. Grant RP. In: Clinical Electrocardiographлет: The Spatial Vector Approach. Grant RP, editor. New York: McGraw-H ill Inc; 1957. pp. 1–225.

20. Ball MF, Pipberger HV. The normal spatial QRS-T angle of the orthogonal vectorcardiogram. American Heart Journal. 1958; 611–615 https://doi.org/10.1016/0002–8703(58)90090-5.

21. Draper HV, Peffer CJ, Stallmann FV, Littmann D, Pipberger HV. The corrected orthogonal electrocardiogram and vectorcardiogram in 510 normal men (Frank lead system). Circulation. 1964;30:853–64 DOI: 10.1161/01.cir.30.6.853

22. H. V. Pipberger, M. J. Goldman, D. Littmann, G.P. et al. Correlations of the orthogonal electrocardiogram and vectorcardiogram with consitutional variables in 518 normal men. Circulation. 1967; 35(3):536–51. doi: 10.1161/01.cir.35.3.536.

23. Scherptong RWC, Henkens IR. Normal limits of the spatial QRS-T angle and ventricular gradient in 12-lead electrocardiograms of young adults: dependence on sex and heart rate. Journal of Electrocardiology. 2008: 648–655. https://doi.org/10.1016/j.jelectrocard.2008.07.006.

24. Kardys I, Kors JA, Van der Meer I, Hofman A, Van der Kuip DA, Witteman JC. Spatial QRS-T angle predicts cardiac death in a general population. Eur Heart J. 2003;24:1357–1364.

25. Yamazaki T, Froelicher VF, Myers J, Chun S, Wang P. Spatial QRS-T angle predicts cardiac death in a clinical population. Heart Rhythm. 2005;2:73–78.

26. Rautaharju PM, Kooperberg C, Larson JC, LaCroix A. Electrocardiographic abnormalities that predict coronary heart disease events and mortality in postmenopausal women: The Women’s Health Initiative. Circulation. 2006;113:473–480.

27. Zhang ZM, Rautaharju PM, Prineas RJ, et al. Electrocardiographic QRS-T angle and the risk of incident silent myocardial infarction in the Atherosclerosis Risk in Communities study. J Electrocardiol. 2017;50(5):661–6. doi: 10.1016/j.jelectrocard.2017.05.001

28. Andrew Oehler, M.D.,* Trevor Feldman, B.S.,† Charles A. Henrikson, M.D., M.P.H.,† and Larisa G. Tereshchenko, M.D., Ph.D. QRS-T Angle: A Review Ann Noninvasive Electrocardiol 2014;19(6):534–542

29. Voulgari C, Pagoni S, Tesfaлетe S, Tentolouris N. The spatial QRS-T angle: implications in clinical practice. Curr Cardiol Rev. 2013;9(3):197– 210. doi: 10.2174/1573403x113099990031. PMID: 23909632; PMCID: PMC3780345.

30. Perez-A lday E.A., Li- Pershing Y., Bender A. et al.Importance of the heart vector origin point definition for an ECG analysis: the Atherosclerosis Risk in Communities (ARIC) study. Comput. Biol. Med.,104 (2019;127–138, https://doi.org/10.1016/j.compbiomed.2018.11.013

31. Young WJ, Duijvenboden S, Ramírez J, et al. A Method to Minimise the Impact of ECG Marker Inaccuracies on the Spatial QRS-T angle: Evaluation on 1,512 Manually Annotated ECGs, Biomedical Signal Processing and Control. 2021. https://doi.org/10.1016/j.bspc.2020.102305


Review

For citations:


Gasanova M.E., Drozdov D.V., Kozlovskaya I.L., Kozhemyakina E.Sh. Sustainability of spatial QRS-T angle of vectorcardiogram to filtration: a pilot study. Medical alphabet. 2023;1(7):34-40. (In Russ.) https://doi.org/10.33667/2078-5631-2023-7-34-40

Views: 290


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)