Preview

Medical alphabet

Advanced search

Immunological characteristics of primary tumor and bone marrow in patients with breast cancer

https://doi.org/10.33667/2078-5631-2022-31-23-27

Abstract

Introduction. The Implementation of immunotherapy in cancer requires a thorough analysis of the biological characteristics of the tumor. Therefore, the study of tumor immunophenotype is the leading scientific direction. Molecules of the major histocompatibility complex are considered as promising markers for evaluating the possibility of using immunotherapy.

Objective. To study the immunophenotype of the primary tumor in molecular subtypes of breast cancer and analyze it depending on the frequency of bone marrow damage.  

Materials and methods. The study included 99 patients with breast cancer. Tumor tissue and bone marrow samples were studied. Stages: T1 (51.5%), T2 (44.4%), T3 (2.0%). Metastatic involvement of lymph nodes (N+) was noted in 39.4% (n = 39) of cases. Immunophenotyping of the tumor was carried out on cryostat sections by immunofluorescence. Antibodies to HLA-I, HLA-II, KL1, FITC-labeled F(ab2) antiserum fragments (Becton Dickinson, USA) were used. The bone marrow was studied by morphological (Zeiss microscope, Axioskop, Germany) and immunological methods (flow cytometry, FACS Canto II, USA), data analysis – Kaluza Analysis v2.1 software. Used monoclonal antibodies: CD45, EPCAM (Becton Dickinson, USA). Statistical data processing was performed using the IBM-SPSS Statistics 21 package.  

Results. The HLA-I antigen is absent or expressed by single tumor cells in 50.8% of cases of luminal breast cancer. Pronounced or partial expression was noted in 36.9% of cases. With the Erb-B2 subtype, all samples had the expression of antigens of the HLA-I class. Loss of HLA-I antigen or weak expression was observed in 30% (3/10) of cases of the triple-negative subtype, in the same percentage of cases the expression of HLA-II molecules was noted. There were no significant differences in the expression of HLA molecules between subtypes. Using flow cytometry, bone marrow involvement was detected in 40% (26/65) of cases. There were no significant relationships between bone marrow damage and the size of the primary tumor, stage, grade of breast cancer, or expression of HLA molecules.  

Conclusions. The expression of HLA molecules does not differ in significant differences depending on the biological subtype. The frequency of bone marrow damage did not depend on the expression of HLA-I, class II molecules. 

About the Authors

D. A. Ryabchikov
National Medical Research Centre of Oncology n.a. N.N. Blokhin
Russian Federation

Ryabchikov Denis A., DM Sci (habil.), head of Dept of Surgical Treatment of Breast Tumors No. 16

Moscow



S. V. Chulkova
National Medical Research Centre of Oncology n.a. N.N. Blokhin; Russian National Research Medical University n.a. N.I. Pirogov
Russian Federation

Chulkova Svetlana V., PhD, associate professor, senior researcher at Laboratory of Immunology of Нaematopoiesis, associate professor at Dept of Oncology and Radiotherapy

Moscow



S. D. Zheltikov
National Medical Research Centre of Oncology n.a. N.N. Blokhin; Moscow State University of Medicine and Dentistry n.a. A.I. Evdokimov
Russian Federation

Zheltikov Sergei D., resident at Surgical Dept No. 16 of Research Institute of Clinical Oncology, resident at Dept of Clinical Oncology

Moscow



A. A. Osipova
National Medical Research Centre of Oncology n.a. N.N. Blokhin
Russian Federation

Osipova Aleksandra A., postgraduate student of Dept of Oncology

Moscow



N. N. Tupitsyn
National Medical Research Centre of Oncology n.a. N.N. Blokhin
Russian Federation

Tupitsyn Nikolai N., DM Sci (habil.), professor, head of Laboratory of Immunology of Нaematopoiesis

Moscow



References

1. American Cancer Society. Cancer Fact and Figures. 2020. 27 p.

2. Коваленко Е.И., Артамонова Е.В. Неоадъювантная терапия рака молочной железы. Значение резидуальной болезни. Медицинский алфавит. 2020; (20): 30–33. DOI: 10.33667/2078–5631–2020–20–30–33.

3. Kovalenko E. I., Artamonova E. V. Neoadjuvant therapy for breast cancer. Significance of residual disease. Medical Alphabet. 2020; (20): 30–33. DOI: 10.33667/2078–5631–2020–20–30–33.

4. Sabbatino F., Liguori L., Polcaro G et al. Role of Human Leukocyte Antigen System as A Predictive Biomarker for Checkpoint-Based Immunotherapy in Cancer Patients. Int. J. Mol. Sci. 2020, 21, 7295. DOI:10.3390/ijms21197295.

5. Bevilacqua G.R.F. da S., Giabardo T.A.S., Aparecida R.D. et al. Expression of the Classical and Nonclassical HLA Molecules in Breast Cancer, International Journal of Breast Cancer, vol. 2013. DOI: 10.1155/2013/250435.

6. Shukla A, Cloutier M, Santharam A. M. et al. The MHC Class-I Transactivator NLRC 5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. Int J Mol Sci. 2021 Feb 17; 22 (4): 1964. DOI: 10.3390/ ijms22041964.PMID: 33671123.

7. Martin H.P., Brian L.H., Hans Ch.B. et al. Downregulation of antigen presentation-associated pathway proteins is linked to poor outcome in triple-negative breast cancer patient tumors, OncoImmunology, 2017; 6:5, e1305531, DOI: 10.1080/2162402X.2017.1305531.

8. Habashy H. O., Powe D. G., Staka C.M. et al. Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen. Breast Cancer Res Treat 119, 283 (2010). Doi: 10.1007/S10549–009–0345-X.

9. Chernysheva O., Markina I., Demidov L, et al. Bone marrow involvement in melanoma. Potentials for detection of disseminated tumor cells and characterization of their subsets by flow cytometry. Cells 2019; 8: 627. DOI: 10.3390/cells8060627. PMID: 31234438.

10. Чулкова С.В., Кожоналиева А.М., Стилиди И.С., идр. Характеристика эритроидного ростка костного мозга убольных раком яичников. Мед. алфавит. 2021; 1: 39–45.

11. Chulkova S.V., Kozhonalieva A.M., Stilidi I.S., et al. Characteristics of the erythroid germ of the bone marrow in patients with ovarian cancer. Med. Alfabet. 2021; 1: 39–45 (in Russian).

12. Чулкова С. В., Тупицын Н.Н., Джуманазаров Т. М. и др. Обнаружение диссеминированных опухолевых клеток в костном мозге у больных немелкоклеточным раком легкого. Рос. биотерапевт. журн. 2020; 19 (3): 29–37.

13. Chulkova S.V., Tupitsyn N.N., Dzhumanazarov T.M., et al. Detection of disseminated tumor cells in the bone marrow in patients with non-small cell lung cancer. Rus. Biotherapeut. Journ. 2020; 19 (3): 29–37 (in Russian).

14. Рябчиков Д. А., Безнос О. А., Дудина И. А., и др. Диссеминированные опухолевые клетки у пациентов с люминальным раком молочной железы. Рос. биотерапевт. журн. 2018; 17 (1): 53–7.

15. Riabchikov D. A., Beznos O. A., Dudina I. A., et al. Disseminated tumor cells in patients with luminal breast cancer. Rus. Biotherapeut. Journ. 2018; 17 (1): 53–7 (in Russian).

16. Kaneko et al.: Clinical implication of HLA class I expression in breast cancer. BMC Cancer 2011. 11: 454. DOI: 10.1186/1471–2407–11–454.

17. Енгай Д.А., Поддубная И.В., Тупицын Н.Н. Особенности иммунофенотипа клеток рака молочной железы IIb стадии. Сибирский онкологический журнал. 2007; 4 (24): 66–69.

18. Engai D.A., Poddubnaya I.V., Tupitsyn N.N. Features of the immunophenotype of stage IIb breast cancer cells. Siberian Journal of Oncology. 2007; 4 (24): 66–69.

19. Sinn B. V., Weber K. E., Schmitt W.D. et al. Human leucocyte antigen class I in hormone receptor-positive, HER 2-negative breast cancer: association with response and survival after neoadjuvant chemotherapy. Breast Cancer Res 21, 142, 2019. DOI: 10.1186/S13058–019–1231-Z.

20. Braun S., Vogl F. D., Naume B. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med. 2005; 353: 793–802. DOI: 10.1056/ NEJMoa050434.

21. Крохина О. В., Летягин В. П., Тупицын Н. Н. и др. Иммуноморфологическая диагностика микрометастазов рака молочной железы в костный мозг. Опухоли женской репродуктивной системы 2005; (1): 70–3.

22. Krokhina O.V., Letyagin V.P., Tupitsyn N.N. Immunomorphological diagnosis of micrometastases of breast cancer in the bone marrow. Tumors of the Female Reproductive System 2005; (1): 70–3.

23. Чулкова С.В., Чернышева О.А., Маркина И. Г. и др. Стволовые опухолевые клетки меланомы. Поражение костного мозга. Обзор и представление собственных данных. Вестник российского научного центра рентгенорадиологии. 2019; 4: 182–197.

24. Chulkova S.V., Chernysheva O.A., Markina I.G. and other Stem tumor cells of melanoma. Bone marrow damage. Review and presentation of your own data. Bulletin of the Russian Scientific Centre for Roentgen Radiology. 2019; 4: 182–197.

25. Bartkowiak K., Effenberger K.E., Harder S., et al. Discovery of a novel unfolded protein response phenotype of cancer stem/progenitor cells from the bone marrow of breast cancer patients. J Proteome Res 2010; 9: 3158–3168. DOI: 10.1021/pr100039d. PMID: 20423148.

26. Sai B., Xiang J. Disseminated tumour cells in bone marrow are the source of cancer relapse after therapy J Cell Mol Med. 2018; 22: 5776–5786. DOI: 10.1111/ jcmm.13867. PMID: 30255991.

27. Тупицын Н.Н. Циркулирующие и диссеминированные раковые клетки при раке молочной железы и раке яичников. Онкогинекология 2013; (1): 12–8.

28. Tupitsyn N.N. Circulating and disseminated cancer cells in breast and ovarian cancer. Oncogynecology 2013; (1): 12–8.

29. Чулкова С.В., Маркина И. Г., Антипова А.С., Грищенко Н.В., Пустынский И.В., Егорова А. В., Рябчиков Д. А., Синельников И. Е. Роль стволовых опухолевых клеток в канцерогенезе и прогнозе меланомы. Вестник Российского научного центра рентгенорадиологии. 2018; 18 (4): 100–16.

30. Chulkova S. V., Markina I. G., Antipova A. S., Grishchenko N. V., Pustynsky I. V., Egorova A. V., Ryabchikov D.A., Sinelnikov I. E. The role of tumor stem cells in carcinogenesis and melanoma prognosis. Bulletin of the Russian Scientific Center for Roentgen Radiology. 2018; 18 (4): 100–16.

31. De Sousa VML, Carvalho L Heterogeneity in Lung Cancer. Pathobiology. 2018; 85 (1–2): 96–107. DOI: 10.1159/000487440. Epub 2018 Apr 10.

32. Wimberger P, Heubner M, Otterbach F, Fehm T, Kimmig R, Kasimir-Bauer S: Influence of platinum-based chemotherapy on disseminated tumor cells in blood and bone marrow of patients with ovarian cancer. Gynecol Oncol 2007, 107 (2): 331–338.

33. Чулкова С. В. Биомаркеры стволовых клеток желудка. Вопросы биологической, медицинской и фармацевтической химии. 2018; 21 (10): 11–7. DOI: 10.29296/25877313–2018–10–02.

34. Chulkova S.V. Biomarkers of gastric stem cells. Questions of biological, medical and pharmaceutical chemistry. 2018; 21 (10): 11–7. DOI: 10.29296/25877313–2018–10–02.

35. Артамонова Е.В. Роль иммунофенотипирования в диагностике и прогнозе рака молочной железы. Иммунология гемопоэза. 2009; 1 (9): 8–52. Artamonova E.V. The role of immunophenotyping in the diagnosis and prognosis of breast cancer. Immunology of Hematopoiesis. 2009; 1 (9): 8–52.

36. Ибрагимова М.К. Изменение генетического ландшафта опухоли молочной железы в процессе неоадъювантной химиотерапии: связь с метастазированием 14.01.12–онкология (биологические науки). Диссертация на соискание ученой степени кандидата биологических наук, 2021.

37. Ibragimova M. K. Changes in the genetic landscape of breast tumors during neoadjuvant chemotherapy: association with metastasis 14.01.12 – Oncology (biological sciences). Thesis for the degree of candidate of biological sciences, 2021.


Review

For citations:


Ryabchikov D.A., Chulkova S.V., Zheltikov S.D., Osipova A.A., Tupitsyn N.N. Immunological characteristics of primary tumor and bone marrow in patients with breast cancer. Medical alphabet. 2022;(31):23-27. (In Russ.) https://doi.org/10.33667/2078-5631-2022-31-23-27

Views: 416


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)