Preview

Medical alphabet

Advanced search

Navigated transcranial magnetic stimulation: Question of accuracy

https://doi.org/10.33667/2078-5631-2022-21-27-31

Abstract

In this literature review and our own data, we provide information about navigational transcranial magnetic stimulation (TMS). At present, a significant amount of knowledge has been accumulated about the use of TMS, both diagnostic and therapeutic, in real clinical practice. Diagnostic TMS has been studied and developed maximally. Nevertheless, despite the undoubted clinical effect of therapeutic TMS, the question of the need for the most accurate target designation for the greatest effectiveness of treatment remains controversial. A number of publications emphasize and justify the need for such target designation, but others report a positive clinical effect of stimulation regardless of the exact location of the inductor. This undoubtedly makes further research in this area relevant with an assessment of the comparative effectiveness of the most accurate rhythmic TMS with other protocols for its use.

About the Authors

V. B. Voitenkov
Pediatric Research and Clinical Centre for Infectious Diseases; Academy of Postgraduate Education of the Federal Research and Clinical Centre for Specialized Medical Care and Medical Technologies of Federal Medical- Biological Agency
Russian Federation

Voitenkov Vladislav B., PhD Med, head of Clinical Dept of Neurophysiology, associate professor of Dept of Nervous Diseases and Neurorehabilitation

RINC: 643867

Saint Petersburg



E. V. Ekusheva
Academy of Postgraduate Education of the Federal Research and Clinical Centre for Specialized Medical Care and Medical Technologies of Federal Medical- Biological Agency; Belgorod State National Research University
Russian Federation

Ekusheva Evgenia V., DM Sci (habil.), professor, head of Dept of Nervous Diseases and Neurorehabilitation, senior researcher at Laboratory ‘Problems of Aging’ of National Research University

Moscow



A. V. Maslyukova
Ivanovo State Medical Academy
Russian Federation

Maslyukova Anna V., PhD Med, associate professor at Biochemistry Dept

Ivanovo



A. V. Klimkin
Pediatric Research and Clinical Centre for Infectious Diseases
Russian Federation

Klimkin Andrey V., PhD Med, acting head of Scientific Dept of Neurophysiology

Saint Petersburg



M. A. Bedova
Pediatric Research and Clinical Centre for Infectious Diseases
Russian Federation

Bedova Mariia A., junior researcher at Research Dept of Neurophysiology

Saint Petersburg



References

1. Fitzgerald P. B. Targeting repetitive transcranial magnetic stimulation in depression: do we really know what we are stimulating and how best to do it? Brain Stimul. 2021; 14 (3): 730–736. https://doi.org/10.1016/j.brs.2021.04.018

2. Perera T., George M. S., Grammer G., Janicak P. G., Pascual-Leone A., Wirecki T. S. The Clinical TMS Society Consensus Review and Treatment Recommendations for TMS Therapy for Major Depressive Disorder. Brain Stimul. 2016; 9 (3): 336–346. https://doi.org/10.1016/j.brs.2016.03.010

3. Evers S., Summ O. Neurostimulation Treatment in Chronic Cluster Headache-a Narrative Review. Curr Pain Headache Rep. 2021; 25 (12): 81. https://doi.org/10.1007/s11916–021–00989–6

4. Zhang K. L., Yuan H., Wu F. F., Pu X. Y., Liu B. Z., Li Z., Li K. F., Liu H., Yang Y., Wang Y. Y. Analgesic Effect of Noninvasive Brain Stimulation for Neuropathic Pain Patients: A Systematic Review. Pain Ther. 2021; 10 (1): 315–332. https://doi.org/10.1007/s40122–021–00252–1

5. Voitenkov V. B., Ekusheva E. V., Maslyukova A. V., Klimkin A. V. Transcranial magnetic stimulation in clinical practice. SPb., M.: 2021. 110 p. (In Russ.)

6. Herwig U., Satrapi P., Schönfeldt-Lecuona C. Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr. 2003; 16 (2): 95–99. https://doi.org/10.1023/b:brat.0000006333.93597.9d

7. Pascual-Leone A., Rubio B., Pallardó F., Catalá M. D. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet. 1996; 348 (9022): 233–237. https://doi.org/10.1016/s0140–6736(96)01219–6

8. George M. S., Ketter T. A., Post R. M. Prefrontal cortex dysfunction in clinical depression. Depression. 1994; 2: 59–72.

9. Piani M. C., Maggioni E., Delvecchio G., Brambilla P. Sustained attention alterations in major depressive disorder: A review of fMRI studies employing Go/ No-Go and CPT tasks. J Affect Disord. 2022; 303: 98–113. https://doi.org/10.1016/j.jad.2022.02.003

10. Kang S. G., Cho S. E. Neuroimaging Biomarkers for Predicting Treatment Response and Recurrence of Major Depressive Disorder. Int J Mol Sci. 2020; 21 (6): 2148. https://doi.org/10.3390/ijms21062148

11. Rajkowska G., Goldman-Rakic P. S. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. Cereb Cortex. 1995; 5 (4): 323–37. https://doi.org/10.1093/cercor/5.4.323

12. Fitzgerald P. B., Hoy K., McQueen S., Maller J. J., Herring S., Segrave R., Bailey M., Been G., Kulkarni J., Daskalakis Z. J. A randomized trial of rTMS targeted with MRI based neuro-navigation in treatment-resistant depression. Neuropsychopharmacology. 2009; 34 (5): 1255–62. https://doi.org/10.1038/npp.2008.233

13. Mylius V., Ayache S. S., Ahdab R., Farhat W. H., Zouari H. G., Belke M., Brugières P., Wehrmann E., Krakow K., Timmesfeld N., Schmidt S., Oertel W. H., Knake S., Lefaucheur J. P. Definition of DLPFC and M1 according to anatomical landmarks for navigated brain stimulation: inter-rater reliability, accuracy, and influence of gender and age. Neuroimage. 2013; 78: 224–232. https://doi.org/10.1016/j.neuroimage.2013.03.061

14. Hebel T., Göllnitz A., Schoisswohl S., Weber F. C., Abdelnaim M., Wetter T. C., Rupprecht R., Langguth B., Schecklmann M. A direct comparison of neuronavigated and non-neuronavigated intermittent theta burst stimulation in the treatment of depression. Brain Stimul. 2021; 14 (2): 335–343. https://doi.org/10.1016/j.brs.2021.01.013

15. Fox M. D., Buckner R. L., White M. P., Greicius M. D., Pascual-Leone A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry. 2012; 72 (7): 595–603. https://doi:10.1016/j.biopsych.2012.04.028

16. Weigand A., Horn A., Caballero R., Cooke D., Stern A. P., Taylor S. F., Press D., Pascual-Leone A., Fox M. D. Prospective Validation That Subgenual Connectivity Predicts Antidepressant Efficacy of Transcranial Magnetic Stimulation Sites. Biol Psychiatry. 2018; 84 (1): 28–37. https://doi:10.1016/j.biopsych.2017.10.028.

17. Cash R. F.H., Zalesky A., Thomson R. H., Tian Y., Cocchi L., Fitzgerald P. B. Subgenual Functional Connectivity Predicts Antidepressant Treatment Response to Transcranial Magnetic Stimulation: Independent Validation and Evaluation of Personalization. Biol Psychiatry. 2019; 86 (2): e5–e7. https://doi:10.1016/j.biopsych.2018.12.002

18. Cole E. J., Stimpson K. H., Bentzley B. S., Gulser M., Cherian K., Tischler C., Nejad R., Pankow H., Choi E., Aaron H., Espil F. M., Pannu J., Xiao X., Duvio D., Solvason H. B., Hawkins J., Guerra A., Jo B., Raj K. S., Phillips A. L., Barmak F., Bishop J. H., Coetzee J. P., DeBattista C., Keller J., Schatzberg A. F., Sudheimer K. D., Williams N. R. Stanford Accelerated Intelligent Neuromodulation Therapy for Treatment-Resistant Depression. Am J Psychiatry. 2020; 177 (8): 716–726. https://doi:10.1176/appi.ajp.2019.19070720

19. Herbsman T., Avery D., Ramsey D., Holtzheimer P., Wadjik C., Hardaway F., Haynor D., George M. S., Nahas Z. More lateral and anterior prefrontal coil location is associated with better repetitive transcranial magnetic stimulation antidepressant response. Biol Psychiatry. 2009; 66 (5): 509–15. https://doi:10.1016/j.biopsych.2009.04.034

20. Johnson K. A., Baig M., Ramsey D., Lisanby S. H., Avery D., McDonald W.M., Li X., Bernhardt E. R., Haynor D. R., Holtzheimer P. E. 3rd, Sackeim H. A., George M. S., Nahas Z. Prefrontal rTMS for treating depression: location and intensity results from the OPT-TMS multi-site clinical trial. Brain Stimul. 2013; 6 (2): 108–17. https://doi:10.1016/j.brs.2012.02.003

21. Siddiqi S. H., Taylor S. F., Cooke D., Pascual-Leone A., George M. S., Fox M. D. Distinct Symptom-Specific Treatment Targets for Circuit-Based Neuromodulation. Am J Psychiatry. 2020; 177 (5): 435–446. https://doi:10.1176/appi.ajp.2019.19090915

22. Maneeton B., Maneeton N., Woottiluk P., Likhitsathian S. Repetitive Transcranial Magnetic Stimulation Combined with Antidepressants for the First Episode of Major Depressive Disorder. Curr Neuropharmacol. 2020; 18 (9): 852–860. https://doi:10.2174/1570159X18666200221113134

23. Berlim M. T., Van den Eynde F., Daskalakis Z. J. High-frequency repetitive transcranial magnetic stimulation accelerates and enhances the clinical response to antidepressants in major depression: a meta-analysis of randomized, double-blind, and sham-controlled trials. J Clin Psychiatry. 2013; 74 (2): e122–9. https://doi:110.4088/JCP.12r07996

24. Halawa I., Goldental A., Shirota Y., Kanter I., Paulus W. Less Might Be More: Conduction Failure as a Factor Possibly Limiting the Efficacy of Higher Frequencies in rTMS Protocols. Front Neurosci. 2018; 12: 358. https://doi:10.3389/fnins.2018.00358

25. Yang Z., Sheng X., Qin R., Chen H., Shao P., Xu H., Yao W., Zhao H., Xu Y., Bai F. Cognitive Improvement via Left Angular Gyrus-Navigated Repetitive Transcranial Magnetic Stimulation Inducing the Neuroplasticity of Thalamic System in Amnesic Mild Cognitive Impairment Patients. J Alzheimers Dis. 2022; 86 (2): 537–551. https://doi:10.3233/JAD-215390

26. Menardi A., Rossi S., Koch G., Hampel H., Vergallo A., Nitsche M. A., Stern Y., Borroni B., Cappa S. F., Cotelli M., Ruffini G., El-Fakhri G., Rossini P. M., Dickerson B., Antal A., Babiloni C., Lefaucheur J. P., Dubois B., Deco G., Ziemann U., Pascual-Leone A., Santarnecchi E. Toward noninvasive brain stimulation 2.0 in Alzheimer's disease. Ageing Res Rev. 2022; 75: 101555. https://doi:10.1016/j.arr.2021.101555

27. Gomez L. J., Dannhauer M., Peterchev A. V. Fast computational optimization of TMS coil placement for individualized electric field targeting. Neuroimage. 2021; 228: 117696. https://doi:10.1016/j.neuroimage.2020.117696

28. Thomson R. H., Cleve T. J., Bailey N. W., Rogasch N. C., Maller J. J., Daskalakis Z. J., Fitzgerald P. B. Blood oxygenation changes modulated by coil orientation during prefrontal transcranial magnetic stimulation. Brain Stimul. 2013; 6 (4): 576–81. https://doi:10.1016/j.brs.2012.12.001

29. Jin Y., Xing G., Li G., Wang A., Feng S., Tang Q., Liao X., Guo Z., McClure M.A., Mu Q. High Frequency Repetitive Transcranial Magnetic Stimulation Therapy for Chronic Neuropathic Pain: A Meta-analysis. Pain Physician. 2015; 18 (6): E 1029–46.

30. Takeuchi N., Tada T., Matsuo Y., Ikoma K. Low-frequency repetitive TMS plus anodal transcranial DCS prevents transient decline in bimanual movement induced by contralesional inhibitory rTMS after stroke. Neurorehabil Neural Repair. 2012; 26 (8): 988–98. https://doi:10.1177/1545968311433295

31. Hsu W. Y., Cheng C. H., Liao K. K., Lee I. H., Lin Y. Y. Effects of repetitive transcranial magnetic stimulation on motor functions in patients with stroke: a meta-analysis. Stroke. 2012; 43 (7): 1849–57. https://doi:10.1161/STROKEAHA.111.649756

32. Hao Z., Wang D., Zeng Y., Liu M. Repetitive transcranial magnetic stimulation for improving function after stroke. Cochrane Database Syst Rev. 2013; 2013 (5): CD 008862. https://doi:10.1002/14651858.CD008862.pub2

33. Le Q., Qu Y., Tao Y., Zhu S. Effects of repetitive transcranial magnetic stimulation on hand function recovery and excitability of the motor cortex after stroke: a meta-analysis. Am J Phys Med Rehabil. 2014; 93 (5): 422–30. https://doi:10.1097/PHM.0000000000000027

34. Harvey R. L., Edwards D., Dunning K., Fregni F., Stein J., Laine J., Rogers L. M., Vox F., Durand-Sanchez A., Bockbrader M., Goldstein L. B., Francisco G. E., Kinney C. L., Liu C. Y. Randomized Sham-Controlled Trial of Navigated Repetitive Transcranial Magnetic Stimulation for Motor Recovery in Stroke. Stroke. 2018; 49 (9): 2138–2146. https://doi:10.1161/strokeaha.117.020607

35. Yeung J. T., Young I. M., Doyen S., Teo C., Sughrue M. E. Changes in the Brain Connectome Following Repetitive Transcranial Magnetic Stimulation for Stroke Rehabilitation. Cureus. 2021; 13 (10): e19105. https://doi:10.7759/cureus.19105

36. Li X., Lin Y. L., Cunningham D. A., Wolf S. L., Sakaie K., Conforto A. B., Machado A. G., Mohan A., O'Laughlin K., Wang X., Widina M., Plow E. B. Repetitive Transcranial Magnetic Stimulation of the Contralesional Dorsal Premotor Cortex for Upper Extremity Motor Improvement in Severe Stroke: Study Protocol for a Pilot Randomized Clinical Trial. Cerebrovasc Dis. 2022: 1–8. https://doi:10.1159/000521514

37. Meng Y., Zhang D., Hai H., Zhao Y. Y., Ma Y. W. Efficacy of coupling intermittent theta-burst stimulation and 1 Hz repetitive transcranial magnetic stimulation to enhance upper limb motor recovery in subacute stroke patients: A randomized controlled trial. Restor Neurol Neurosci. 2020; 38 (1): 109–118. https://doi:10.3233/RNN-190953

38. Bortoletto M., Veniero D., Thut G., Miniussi C. The contribution of TMS-EEG coregistration in the exploration of the human cortical connectome. Neurosci Biobehav Rev. 2015; 49: 114–24. https://doi:10.1016/j.neubiorev.2014.12.014

39. Haddad A. F., Young J. S., Berger M. S., Tarapore P. E. Preoperative Applications of Navigated Transcranial Magnetic Stimulation. Front Neurol. 2021; 11: 628903. https://doi:10.3389/fneur.2020.628903

40. Dadario N. B., Brahimaj B., Yeung J., Sughrue M. E. Reducing the Cognitive Footprint of Brain Tumor Surgery. Front Neurol. 2021; 12: 711646. https://doi:10.3389/fneur.2021.711646

41. Einstein E. H., Dadario N. B., Khilji H., Silverstein J. W., Sughrue M. E., D'Amico R. S. Transcranial magnetic stimulation for post-operative neurorehabilitation in neuro-oncology: a review of the literature and future directions. J Neurooncol. 2022; 157 (3): 435–443. https://doi:10.1007/s11060–022–03987–9


Review

For citations:


Voitenkov V.B., Ekusheva E.V., Maslyukova A.V., Klimkin A.V., Bedova M.A. Navigated transcranial magnetic stimulation: Question of accuracy. Medical alphabet. 2022;(21):27-31. (In Russ.) https://doi.org/10.33667/2078-5631-2022-21-27-31

Views: 427


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-5631 (Print)
ISSN 2949-2807 (Online)