Laboratory assessment of state of post-vaccination humoral immunity to infections with aerosol transmission mechanism
https://doi.org/10.33667/2078-5631-2022-19-50-54
Abstract
The review considers questions about the place of laboratory diagnostics in preventive medicine, in particular, about the possibilities of using laboratory methods in controlling the vaccination of infections with an aerosol transmission mechanism (measles, rubella, mumps, chickenpox, influenza, pneumococcal infection, pertussis, diphtheria, COVID-19). The article highlights the main laboratory methods of seromonitoring (enzyme immunoassay, radial hemolysis reaction in gel, dot-immunoassay, antibody avidity determination, hemagglutination inhibition reaction, microneutralization reaction, FAMA, plaque suppression reaction), their advantages and disadvantages. Also presented a block of data on alternative biomarkers (enzymes, lipids, trace elements, hormones, etc.). which serve as potential predictors of vaccination efficacy. The search for new biomarkers of the effectiveness of the formation of post-vaccination immunity opens up new possibilities for predicting the effectiveness of vaccination, which makes their study a promising direction in the field of vaccinology and laboratory immunology.
About the Authors
A. A. EreshchenkoRussian Federation
Alyona A. Ereshchenko, assistant
Dept of Fundamental and Clinical Biochemistry with Laboratory Diagnostics
Samara
O. A. Gusyakova
Russian Federation
Oksana A. Gusyakova, DM Sci (habil.), associate professor, head of Dept, head of Laboratory
Dept of Fundamental and Clinical Biochemistry with Laboratory Diagnostics
Clinical Diagnostic Laboratory of the Clinics of Samara State Medical University
Samara
References
1. Национальный стандарт Российской Федерации. ГОСТ Р 53022.3–2008. Технологии лабораторные клинические. Требования к качеству клинических лабораторных исследований. Часть 3. Правила оценки клинической информативности лабораторных тестов. – National standard of the Russian Federation. GOST R 53022.3–2008. Technology clinical laboratory. Requirements for the quality of the Clinical laboratory research. Part 3. The rules of evaluation of clinical informative laboratory tests.
2. Семененко Т. А. Сероэпидемиологические исследования в системе надзора за вакциноуправляемыми инфекциями / Т. А. Семененко, В. Г. Акимкин // Журнал микробиологии, эпидемиологии и иммунобиологии. –2018. – (2): 87–94. https://doi.org/10.36233/0372–9311–2018–2–87–94. – Semenenko T. A., Akimkin V. G. Seroepidemiology in the surveillance of vaccine-preventable diseases. Journal of microbiology epidemiology immunobiology. 2018; (2): 87–94. https://doi.org/10.36233/0372–9311–2018–2–87–94.
3. Фельдблюм И. В. Эпидемиологический надзор за вакцинопрофилактикой / И. В. Фельдблюм // Журнал МедиАль. – 2014. – 3 (13): 37–55. – Feldblyum I. V. Epidemiologic surveillance over preventive vaccination. Journal MediAl. 2014; 3 (13): 37–55.
4. Семененко Т. А. Иммунный ответ при вакцинации против гепатита В у лиц с иммунодефицитными состояниями / Т. А. Семененко // Эпидемиология и вакцинопрофилактика. – 2011. – 1 (56): 51–59. – Semenenko T. A. Immune response after vaccination against hepatitis b in patients with immunodeficiency. Epidemiology and vaccinal prevention. 2011; 1 (56): 51–59.
5. Топтыгина А. П. Формирование и поддержание специфического клеточного иммунного ответа на вакцинацию Приорикс / А. П. Топтыгина, Е. Л. Семикина, В. А. Алешкин // Иммунология. – 2013. – 34 (5): 257–261. – Toptygina A. P., Semikina E. L. Alioshkin V. A. The shaping and the maintenance of T-cell specific immune response to vaccination Priorix. Immunologiya. 2013; 34 (5): 257–261.
6. Баум Т. Г. Вакциноуправляемые инфекции: специфическая профилактика и протиоэпидемические мероприятия: учебное пособие для студентов педиатрических факультетов медицинских вузов / Т. Г. Баум, О. Г. Первишко, В. А. Шашель. – Краснодар, 2019. – 161 с. – Baum T. G., Pervishko O. G., Shashel V. A. Vaccine-controlled infections: specific prevention and anti-epidemic measures: a textbook for students of pediatric faculties of medical universities. Krasnodar, 2019. 161 pp.
7. МУ 3.1.2943–11. Организация и проведение серологического мониторинга состояния коллективного иммунитета к инфекциям, управляемым средствами специфической профилактики. – MU 3.1.2943–11. Organization and Serological Monitoring of Herd Immunity to Infections, Controlled Preventable Diseases.
8. Авдонина А. С. Иммунный блоттинг в лабораторной диагностике герпесвирусных инфекций / А. С. Авдонина, С. С. Марданлы, В. А. Киселева // Известия ГГТУ. Медицина, фармация. – 2020. – (2): 30–36. – Avdonina A. S., Mapdanly S. S., Kiseleva V. A. Immune blotting in laboratory diagnostics of herpesvirus infections. Izvestiya GGTU. Medicine, pharmacy. 2020; (2): 30–36.
9. Kurtz J. B., Mortimer P. P., Mortimer P. R. [et al.]. Rubella antibody measured by radial haemolysis. Characteristics and performance of a simple screening method for use in diagnostic laboratories. J Hyg (Lond). 1980; 84 (2): 213–22. https://doi.org/10.1017/s0022172400026711.
10. Ерш А. В. Метод комплексной оценки гуморального иммунитета к детским вакциноуправляемым вирусным инфекциям / А. В. Ерш // Вопросы вирусологии. – 2015. – 60 (1): 41–45. – Ersh A. V., Poltavchenko A. G., Pyankov S. A. [et al.]. The multiplex method of estimation of humoral immunity to vaccine regulated childhood infections. Issues of Virology. 2015; 60 (1): 41–45.
11. Park D. W., Nam M. H., Kim J. Y. [et al.]. Mumps outbreak in a highly vaccinated school population: assessment of secondary vaccine failure using IgG avidity measurements. Vaccine. 2007; 25 (24): 4665–4670. https://doi.org/10.1016/j.vaccine.2007.04.013.
12. Хайдарова Б. И. Особенности иммунных реакций при краснушной инфекции, их диагностическая и прогностическая информативность / Б. И. Хайдарова, С. У. Шадиева, Д. Х. Исабаева // Евразийский союз ученых. – 2021. – 2 (83): 26–29. – Khaidarova B. I., Shadiyeva S. U., Isabaeva D. Kh. Features of immune reactions in rubella infection, their diagnostic and prognostic informational value. Eurasian Union of Scientists. 2021; 2 (83): 26–29.
13. Вишнева Е. А. Ветрянка прорыва: изменит ли ситуацию новая схема вакцинации? / Е. А. Вишнева, Л. С. Намазова-Баранова // Педиатрическая фармакология. – 2011. – 8 (6): 18–22. – Vishneva E. A., Namazova-Baranova L.S. A breakthrough varicella: will a new vaccination schedule change the situation? Pediatric Pharmacology. 2011; 8 (6): 18–22.
14. Williams V, Gershon A, Brunell P. A. Serologic response to varicella-zoster membrane antigens measured by direct immunofluorescence. J Infect Dis. 1974; 130 (6): 669–72. https://doi.org/10.1093/infdis/130.6.669.
15. Каира А. Н. Ветряная оспа и опоясывающий герпес: учебное пособие / А. Н. Каира, В. Ф. Лавров. – Москва: ФГБОУ ДПО «РМАНПО» Минздрава России, 2020. – 83 с. – Kaira A. N., Lavrov V. F. Chickenpox and Herpes Zoster: a textbook; Moscow: FGBOU DPO RMANPO Ministry of Health of Russia, 2020. 83 pp.
16. Landry M. L., Ferguson D. Comparison of latex agglutination test with enzyme-linked immunosorbent assay for detection of antibody to varicella-zoster virus. J Clin Microbiol. 1993; 31 (11): 3031–3033. https://doi.org/10.1128/jcm.31.11.3031–3033.1993.
17. WHO. The immunological basis for immunization series: module 23: influenza vaccines. Geneva, 2017. 63 pp. URL: https://apps.who.int/iris/handle/10665/259211
18. Zhu H., Ding X., Chen X. [et al.]. Neutralizing antibody but not hemagglutination antibody provides accurate evaluation for protective immune response to H5N 1 avian influenza virus in vaccinated rabbits. Vaccine. 2011; 29 (33): 5421–5423. https://doi.org/10.1016/j.vaccine.2011.05.067.
19. Rudenko L., Kiseleva I., Naykhin A. N. [et al.]. Assessment of human immune responses to H7 avian influenza virus of pandemic potential: results from a placebo-controlled, randomized double-blind phase I study of live attenuated H7N 3 influenza vaccine. PLoS One. 2014; 9 (2): e87962. https://doi.org/10.1371/journal.pone.0087962.
20. Deeks J. J., Dinnes J., Takwoingi Y. [et al.]. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev. 2020; 6 (6): CD 013652. https://doi.org/10.1002/14651858.CD013652.
21. Kristiansen P. A., Page M., Bernasconi V. [et al.]. WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Lancet. 2021; 397 (10282): 1347–1348. https://doi.org/10.1016/S0140–6736(21)00527–4.
22. Vanderheiden A., Edara V. V., Floyd K. [et al.]. Development of a rapid focus reduction neutralization test assay for measuring sars-cov-2 neutralizing antibodies. Curr Protoc Immunol. 2020; 131 (1): e116. https://doi.org/10.1002/cpim.116.
23. Tan C. W., Chia W. N., Qin X. [et al.]. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE 2-spike protein-protein interaction. Nat Biotechnol. 2020; 38 (9): 1073–1078. https://doi.org/10.1038/s41587–020–0631-z.
24. F. Bouche, W. Ammerlaan, F. Berthet [et al.]. Immunosorbent assay based on recombinant hemagglutinin protein produced in a high-efficiency mammalian expression system for surveillance of measles immunity. J. Clin. Microbiol. 1998; (36): 721–726. https://doi.org/10.1128/JCM.36.3.721–726.1998.
25. Голубкова А. А. Вакцинопрофилактика кори и пути ее оптимизации на завершающем этапе элиминации инфекции / А. А. Голубкова [и др.] // Тихоокеанский медицинский журнал. – 2018. – 4 (74): 91–94. https://doi.org/10.17238/PmJ1609–1175.2018.4.91–94. – Golubkova A. A., Platonova T. A., Kharitonov A. N. [et al.]. Vaccine prophylaxis of measles and ways of its optimization at the final stage of infection elimination. Pacific Medical Journal. 2018; 4 (74): 91–94. https://doi.org/10.17238/PmJ1609–1175.2018.4.91–94.
26. Group B. D. W. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharm. 2001; (69): 89–95. https://doi.org/10.1067/mcp.2001.113989.
27. Van Tilbeurgh M., Lemdani K., Beignon A. S. [et al.]. Predictive markers of immunogenicity and efficacy for human vaccines. Vaccines (Basel). 2021; 9 (6): 579. https://doi.org/10.3390/vaccines9060579.
28. Hosomi K., Kunisawa J. Diversity of energy metabolism in immune responses regulated by micro-organisms and dietary nutrition. Int Immunol. 2020; 32 (7): 447–454. https://doi.org/10.1093/intimm/dxaa020.
29. Козлов А. В. Микобактериозы у пациентов с муковисцидозом: причина или следствие микроэкологических изменений в бронхолегочной системе / А. В. Козлов [и др.] // Астраханский медицинский журнал. – 2020. – 15 (1): 57–65. https://doi.org/10.17021/2020.15.1.57.65. – Kozlov A. V., Lyamin A. V, Kondratenko O. V. [et al.]. Mycobacteriosis in patients with cystic fibrosis: the cause or effect of microecological changes in the bronchopulmonary system. Astrakhan medical journal. 2020; 15 (1): 57–65. https://doi.org/10.17021/2020.15.1.57.65.
30. Wilkins C., Gale M. Jr. Sterol-izing innate immunity. Immunity. 2013; 38 (1): 3–5. https://doi.org/10.1016/j.immuni.2013.01.002.
31. Liu S. Y., Aliyari R., Chikere K. [et al.]. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity. 2013; 38 (1): 92–105. https://doi.org/10.1016/j.immuni.2012.11.005.
32. Rogers T. F., Zhao F., Huang D. [et al.]. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science. 2020; 369 (6506): 956–963. https://doi.org/10.1126/science.abc7520.
33. Nakaya J., Wrammert E., Lee K. [et al.]. Systems biology of vaccination for seasonal influenza in humans. Nat Immunol. 2011; 12 (8): 786–795. https://doi.org/10.1038/ni.2067.
34. Illario M., Giardino-Torchia M. L., Sankar U. [et al.]. Calmodulin-dependent kinase IV links Toll-like receptor 4 signaling with survival pathway of activated dendritic cells. Blood. 2008; 111 (2): 723–731. https://doi.org/10.1182/blood-2007–05–091173.
35. Moore S. E., Richards A. A, Goldblatt D. [et al.]. Early-life and contemporaneous nutritional and environmental predictors of antibody response to vaccination in young Gambian adults. Vaccine. 2012; 30 (32): 4842–4848. https://doi.org/10.1016/j.vaccine.2012.05.009.
36. Гладких Р. А. Неоптерин как современный маркер воспаления / Р. А. Гладких, В. П. Молочный, И. В. Полеско // Детские инфекции. – 2016. – 15 (2): 19–23. – Gladkikh R. A., Molochniy V. P., Polesko I. V. Neopterin as a modern marker of inflammation. Children’s Infections. 2016; 15 (2): 19–23.
37. Verschoor C. P., Lelic A., Parsons R. [et al.]. Serum C-reactive protein and congestive heart failure as significant predictors of Herpes Zoster vaccine response in elderly nursing home residents. J Infect Dis. 2017; 216 (2): 191–197. https://doi.org/10.1093/infdis/jix257.
38. Iyer A. S., Khaskhely N. M., Leggat D. J. [et al.]. Inflammatory markers and immune response to pneumococcal vaccination in HIV-positive and -negative adults. PLoS One. 2016; 11 (3): e0150261. https://doi.org/10.1371/journal.pone.0150261.
39. Козлов А. В. Хроническая инфекция дыхательных путей у пациентов с муковисцидозом: обмен железа и его значение / А. В. Козлов // Иммунопатология, аллергология, инфектология. – 2019. – (4): 62–67. URL: https://www.elibrary.ru/item.asp?id=43858250. – Kozlov A. V. Chronic respiratory tract infection in patients with cystic fibrosis: metabolism of iron and its significance. Immunopathology, Allergology, Infectology. 2019; (4): 62–67. URL: https://www.elibrary.ru/item.asp?id=43858250.
40. Nairz M., Schroll A., Sonnweber T. [et al.]. The struggle for iron – a metal at the host-pathogen interface. Cell Microbiol. 2010; 12 (12): 1691–702. https://doi.org/10.1111/j.1462–5822.2010.01529.x.
41. Eiselt J., Kielberger L., Sedlácková T. [et al.]. High ferritin, but not hepcidin, is associated with a poor immune response to an influenza vaccine in hemodialysis patients. Nephron Clin Pract. 2010; 115 (2): p. 147–53. https://doi.org/10.1159/000312878.
42. Варсови В. В. Дефицит железа у детей: распространенность, взаимосвязь с системой HLA, влияние на поствакцинальный иммунный ответ / В. В. Варсови // Мать и дитя в Кузбассе. – 2003. – 1 (12): 32–33. – Varsovi V. V. Iron deficiency in children: prevalence, relationship with the HLA system, impact on the post-vaccination immune response. Mother and Baby in Kuzbass. 2003; 1 (12): 32–33.
43. Zheng J. D., He Y., Yu H. Y. [et al.]. Unconjugated bilirubin alleviates experimental ulcerative colitis by regulating intestinal barrier function and immune inflammation. World J Gastroenterol. 2019; 25 (15): 1865–1878. https://doi.org/10.3748/wjg.v25.i15.1865.
44. Rosa A., Pye V. E., Graham C. [et al.]. SARS-CoV-2 recruits a haem metabolite to evade antibody immunity. medRxiv [Preprint]. 2021. https://doi.org/10.1101/2021.01.21.21249203.
Review
For citations:
Ereshchenko A.A., Gusyakova O.A. Laboratory assessment of state of post-vaccination humoral immunity to infections with aerosol transmission mechanism. Medical alphabet. 2022;(19):50-54. (In Russ.) https://doi.org/10.33667/2078-5631-2022-19-50-54