Activation of lymphocytes in vitro for immunotherapy of patients with melanoma
https://doi.org/10.33667/2078-5631-2021-31-13-18
Abstract
This article describes a method for activating lymphocytes isolated from the peripheral blood of melanoma patients and cultured in a medium supplemented with IL‑2 and IL‑15. It was shown that in these terms, lymphocytes have an increased proliferative and activation potential. The combination of cytokines has a positive effect on cytotoxicity, viability and the expression of activation markers (CD38, CD69, CD25, HLA-DR and NKG2D) on NK- and T-lymphocyte, and may be recommended for the culture of lymphocytes in melanoma patients for the purpose of adoptive immunotherapy.
About the Authors
E. V. AbakushinaRussian Federation
Abakushina Elena V., DM Sci (habil.), senior researcher of Laboratory of Clinical Immunology1; prof. at Dept of Radionuclide Medicine, Dept of Biotechnology2
Obninsk
Scopus: 15844847700
WosResearcher: O‑6947–2014
eLibrary: 594958
Yu. V. Gel’m
Belarus
Gel’m Yulia V., researcher of Laboratory of Clinical Immunology
Obninsk
Scopus: 57190795044
WosResearcher: O‑7325–2014
eLibrary: 751187
E. Yu. Lyssuk
Russian Federation
Lysyuk Elena Yu., PhD Bio Sci, senior researcher of Laboratory of Molecular Immunology
Moscow
Scopus: 22135546600
WosResearcher: G‑2951–2017
eLibrary: 96321
Moscow
References
1. Shin M.H., Kim J., Lim S.A., et al. NK cell-based immunotherapies in cancer. Immune Netw. 2020; 20 (2). https://doi.org/10.4110/in.2020.20.e14
2. Abakushina E.V., Kozlov I.G. Immunotherapy with natural killer cells in the treatment of cancer. Russian Journal of Immunology. 2016; 10 (19), No. 2: 131–142.
3. Hofer E., Koehl U. Natural killer cell-based cancer immunotherapies: from immune evasion to promising targeted cellular therapies. Frontiers in Immunology. 2017; 8. https://doi.org/10.3389/fimmu.2017.00745
4. Hu W., Wang G., Huang D., et al. Cancer immunotherapy based on natural killer cells: current progress and new opportunities. Front. Immunol. 2019; 10: 1205. https://doi.org/10.3389/fimmu.2019.01205
5. Dahlberg C. I., Sarhan D., Chrobok M., et al. Natural Killer cell-based therapies targeting cancer: possible strategies to gain and sustain anti-tumor activity. Frontiers in Immunology. 2015; 6: 605. https://doi.org/10.3389/ fimmu.2015.00605
6. Zhang C., Hu Y., Shi C. Targeting Natural Killer cells for tumor immunotherapy. Front. Immunol. 2020; 11: 60. https://doi.org/10.3389/fimmu.2020.00060
7. Abakushina E. V., Gelm Yu.V., Pasova I. A., Bazhin A. V. Immunotherapeutic approaches for the treatment of colorectal cancer. Biochemistry (Moscow). 2019; 84 (7): 720–728. https://doi.org/10.1134/S 0006297919070046
8. Gel’m Yu.V., Kuz’mina E.G., Abakushina E. V. Functional activity of lymphocytes of healthy donors and cancer patients after culturing with IL 2 and IL 15. Bulletin of Experimental Biology and Medicine. 2019; 167 (4): 486–491. https://doi.org/10.1007/s10517–019–04556–3
9. Kit О. I., Kirichenko Е.Y., Novikova I.А., Maksimov А.Y., Filippova S.Y., Grankina А.О., Zlatnik Е.Y. Colorectal Cancer Immunotherapy: Current State and Prospects (Review). Modern Technologies in Medicine. 2017; 9 (3): 138–150. https://doi.org/10.17691/stm2017.9.3.18
10. Miller J. S., Soignier Y. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005; 105 (8): 3051–3057. https://doi.org/10.1182/blood 2004–07–2974
11. Kmiecik J., Zimmer J., Chekenya M. Natural killer cells in intracranial neoplasms: presence and therapeutic efficacy against brain tumours. Neuro-Oncology. 2014; 116 (1): 1–9. https://doi.org/10.1007/s11060–013–1265–5
12. Hashemi E, Malarkannan S. Tissue-resident NK cells: development, maturation, and clinical relevance. Cancers (Basel). 2020; 12 (6): 1553. https://doi. org/10.3390/cancers12061553
13. Granzin M., Wagner J., Kohl U., et al. Shaping of Natural killer cell antitumor activity by ex vivo cultivation. Frontiers in Immunology. 2017; 8: 458. https://doi. org/10.3389/fimmu.2017.00458
14. Dafni U., Michielin O., Lluesma SM, et al. Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant Interleukin 2 in advanced cutaneous melanoma: a systematic review and meta-analysis. Ann Oncol. 2019; 30 (12): 1902–1913. https://doi.org/10.1093/annonc/mdz398
15. Wang K., Han Y., Cho W.C., Zhu H. The rise of human stem cell-derived natural killer cells for cancer immunotherapy. Expert Opinion Biological Therapy. 2019; 19 (2): 141–148. https://doi.org/10.1080/14712598.2019.1559293
16. Titov K. S., Demidov L. V., Kiselevsky M. V. et al. Intrapleural IL 2 immunotherapy of patients with metastatic pleurisy. Russian Journal of Oncology. 2010; 4: 20–24.
17. Chen Z., Chen L., Baker K. et al. CEACAM1 dampens antitumor immunity by down-regulating NKG2D ligand expression on tumor cells. Journal of Experimental Medicine. 2011; 208 (13): 2633–40. https://doi.org/10.1084/ jem.20102575
18. Sangiolo D., Martinuzzi E., Todorovic M., et al. Alloreactivity and anti-tumor activity segregate within two distinct subsets of cytokine-induced killer (CIK) cells: implications for their infusion across major HLA barriers. Int Imm. 2008; 20 (7): 841–848. https://doi.org/10.1093/intimm/dxn042
19. Wang F. S., Liu M.X., Zhang B., et al. Antitumor activities of human autologous cytokine-induced killer (CIK) cells against hepatocellular carcinoma cells in vitro and in vivo. World J Gastroenterol. 2002; 8 (3): 464–468. doi: 10.3748/ wjg.v8.i3.464.
20. Oh S., Lee J.H., Kwack K., Choi S.W. Natural Killer cell therapy: a new treatment paradigm for solid tumors. Cancers (Basel). 2019; 11 (10): 1534. https://doi. org/10.3390/cancers11101534
21. Abakushina E. V., Marizina Yu.V., Kaprin A.D. Morphofunctional characteristics of human lymphocytes after in vitro activation. Bulletin of Experimental Biology and Medicine. 2016; 161 (5): 731–735. https://doi.org/10.1007/ s10517–016–3496-x
22. Chikileva I. O., Velizheva N. P., Shubina I. Zh., et al. Content of t-regulatory lymphocytes CD4+CD25+FOXP3+ in lymphokine-activated killer population. Journal of N.N. Blokhin Russian Cancer Research. 2008; 19, 3: 16–25.
23. Akhmatova N.K., Lebedinskaya E.A., Lebedinskaya O.V., Kiselevsky M.V. Natural Killer T (NKT) cells: immunophenotype, functional characteristics and significance in clinical practice. Russian Journal of Immunology. 2007; 1 (10), 3–4: 195–206.
24. Mao Y., van Hoef V., Zhang X., et al. Blood. IL 15 activates mTOR and primes stress-activated gene expression leading to prolonged antitumor capacity of NK cells. 2016; 128 (11). https://doi.org/10.1182/blood 2016–02–698027
25. Lin S. J., Lee P. T., Kuo M. L. Cytokine activation of natural killer cells. Methods in molecular biology. 2014; 1139: 223–229. https://doi.org/10.1007/978–1– 4939–0345–0_19
26. Yurova K.A., Khaziakhmatova O.G., Dunets N.A., Todosenko N.M., Shupletsova V. V., Litvinova L. S. Effect of cytokines (IL 2, IL 7 and IL 15), having a common g-chain of receptors on differentiation and maturation of CD 4+/ CD8+ T-cells in a CD45RA T-lymphocytes population in vitro. Cell and Tissue Biology. 2017; 11 (5): 356–362.
27. Conlon K. C., Lugli E., Welles H. C., Rosenberg S.A. et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin 15 in patients with cancer. J Clin Oncol. 2015; 33 (1): 74–82. https://doi. org/10.1200/JCO.2014.57.3329
Review
For citations:
Abakushina E.V., Gel’m Yu.V., Lyssuk E.Yu. Activation of lymphocytes in vitro for immunotherapy of patients with melanoma. Medical alphabet. 2021;1(31):13-18. (In Russ.) https://doi.org/10.33667/2078-5631-2021-31-13-18