Особенности компонентного состава тела и физиометрических показателей у женщин с неалкогольной жировой болезнью печени

К.В. Выборная¹, С.В. Орлова^{2,3}, Е.А. Никитина^{2,3,4}, О.И. Тарасова², Е.В. Прокопенко⁶, А.Н. Водолазкая⁷, Н.В. Балашова^{2,5}, И.С. Миносян²

- ¹ ФГБУН «Федеральный исследовательский центр питания и биотехнологии». Москва, Россия
- ² ФГАОУ ВО «Российский университет дружбы народов имени Патриса Лумумбы» (РУДН), Москва, Россия
- ³ ГБУЗ «Научно-практический центр детской психоневрологии Департамента здравоохранения г. Москвы», Россия
- 4 ФГБУ «Национальный медицинский исследовательский центр терапии и профилактической медицины» Минздрава России, Москва, Россия
- ⁵ ГБУЗ МО «Московский областной научно-исследовательский клинический институт имени М.Ф. Владимирского», Москва, Россия
- 6 ООО «ИНВИТРО», Москва, Россия
- ⁷ ООО «Медицинский центр Атлас», Москва, Россия

РЕЗЮМЕ

НАЖБП становится все более распространенным заболеванием, которое поражает более 25% взрослых людей во всем мире. Если специфическое обследование для выявления НАЖБП не проводится, это состояние обычно протекает бессимптомно до развития тяжелой и потенциально необратимой печеночной недостаточности. Поскольку начальная стадия НАЖБП не имеет клинических проявлений, малодиагностируема и чаще проявляется у женщин, целью нашего исследования было выявить некоторые особенности компонентного состава тела и физиометрических показателей, характерных для данной группы пациенток.

КЛЮЧЕВЫЕ СЛОВА: неалкогольная жировая болезнь печени, НАЖБП, состав тела, соматотип, мышечная сила, физиометрические показатели, биоимпеданс.

КОНФЛИКТ ИНТЕРЕСОВ. Авторы заявляют об отсутствии конфликта интересов.

Features of body component composition and physiometric indices in women with non-alcoholic fatty liver disease

K. V. Vybornaya¹, S. V. Orlova^{2,3}, E. A. Nikitina^{2,3,4}, O. I. Tarasova², E. V. Prokopenko⁶, A. N. Vodolazkaya⁷, N. V. Balashova^{2,5}, I. S. Minosyan²

- ¹ Federal Research Center for Nutrition and Biotechnology, Moscow, Russia
- ² Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), Moscow, Russia
- ³ Scientific and Practical Center for Child Psychoneurology of the Moscow Department of Health, Russia
- ⁴ National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
- ⁵ Moscow Regional Research Clinical Institute named after M.F. Vladimirsky, Moscow, Russia
- ⁶ LLC "INVITRO", Moscow, Russia
- ⁷ LLC "Medical center Atlas", Moscow, Russia

SUMMARY

NAFLD is becoming an increasingly common disease that affects more than 25% of adults worldwide. If specific examination for NAFLD is not performed, this condition usually proceeds asymptomatically until the development of severe and potentially irreversible liver failure. Since the initial stage of NAFLD has no clinical manifestations and is poorly diagnosed, and is more often manifested in women, the aim of our study was to identify some features of the component composition of the body and physiometric indicators characteristic of this group of patients.

KEYWORDS: non-alcoholic fatty liver disease, NAFLD, body composition, somatotype, muscle strength, physiometric indicators, bioimpedance.

CONFLICT OF INTEREST. The authors declare no conflict of interest.

Введение

Согласно клиническим рекомендациям 2024 года, разработанным Российским обществом по изучению печени [1], неалкогольная (метаболически-ассоциированная) жировая болезнь печени (НАЖБП, nonalcoholic fatty liver disease, NAFLD) — это хроническое заболевание печени, связанное с метаболической дисфункцией, при котором более чем в 5% гепатоцитов определяется макровезикулярный стеатоз. Спектр НАЖБП включает гистологические

признаки и патологический спектр от простого стеатоза (simple steatosis (NAFL)) до стеатогепатита (неалкогольного стеатогепатита (НАСГ), nonalcoholic steatohepatitis, NASH) и фиброза, в итоге приводящего к циррозу.

Считается, что высокие показатели НАЖБП в первую очередь связаны с эпидемией ожирения, особенно в детском и подростковом возрасте. Наряду с НАЖБП пациенты, страдающие фиброзом печени, как правило, скорее имеют ожирение,

чем не имеют его; риск развития НАЖБП ниже у худых, чем у людей с избыточной массой тела или ожирением [2]. Однако рассматривать НАЖБП исключительно как следствие ожирения было бы чрезмерным упрощением, поскольку НАЖБП может развиваться и у лиц с нормальным индексом массы тела (ИМТ) или низкой жировой массой, что позволяет предположить, что основной причиной НАЖБП может быть функция жировой ткани, а не масса жира и ожирение в целом [3].

При оценке ожирения и ассоциаций с НАЖБП используют не только показатели компонентного состава тела, но и индексы отдельных компонентов, такие как простые и двойные индексы жировой, тощей, активной клеточной (АКМ) и скелетно-мышечной массы (СММ) (индекс центрального ожирения) [4].

Поскольку начальная стадия НАЖБП (стеатогепатит) не имеет клинических проявлений, малодиагностируема и чаще проявляется у женщин [4], целью нашего исследования было провести оценку встречаемости в женской популяции случаев стеатогепатита и выявить некоторые особенности компонентного состава тела и физиометрических показателей, характерных для данной группы пациенток.

Материалы и методы

В обследовании приняли участие 49 добровольцев женского пола, которые были разделены на 2 группы: основную группу составила 21 женщина с подтвержденным диагнозом НАЖБП, в контрольную группу вошли 28 женщин без изменений структуры печеночной ткани по результатам УЗИ-диагностики.

Методом антропометрии оценивали габаритные размеры тела: массу тела (МТ, кг), длину тела (ДТ, см), обхватные размеры туловища и конечностей и величины кожно-жировых складок (КЖС) по стандартной методике [5]. По результатам измерений рассчитывали: индекс массы тела (ИМТ); индекс отношения окружности талии (ОТ, см) к окружности бедер (ОБ, см) – ИТБ; индекс отношения ОТ к ДТ – ОТ/ДТ; экскурсию грудной клетки (ОГКвдох–ОГКвыдох, см); развитие мышц плеча (ОПнапр–ОПрассл, см); сумму восьми КЖС: на спине под лопаткой (КЖС подлопаточная), на задней поверхности плеча (КЖС бицепса), на передней поверхности плеча, на животе, над подвздошным гребнем (КЖС надподвздошная), на бедре, на голени; среднюю величину восьми КЖС.

Для оценки количества жировой массы расчетным методом использовали уравнение Durnin and Wamersley (1974) (ПТ = $1,1567 - [0,0717 \times \log \Sigma 4 \text{кжc}]$) с учетом плотности тела по формуле Siri (1961) (%ЖМТ = $[4,950 / \Pi T \text{ (кг/м}^3) - 4,500] \times 100$), разработанное на женской популяции 16-68 лет [6,7,8]:

ЖМТкг = $[(495/[1,1567-0,0717 \times log \Sigma 4 \kappa жc]) - 450] \times MT/100,$

где $\Sigma 4$ кжс = КЖС бицепс + КЖС трицепс + КЖС подлопаточная + КЖС надподвздошная.

Для оценки компонентного состава тела, индексов компонентов массы тела и соматотипологического профиля по схеме Хит-Картер, построения центильных картин и соматотипологических треугольников использовали биоимпедансный анализатор Медасс АВС 01_0362 (НТЦ МЕДАСС, Россия; обновление программного обеспечения 2025–06–14–2DB). Рассчитывали отношение количества тощей массы тела (ТМТ) к жировой (индекс ТМТ/ЖМТ).

Физиометрические показатели оценивали методом кистевой динамометрии и спирометрии. Силу кистей обеих конечностей измеряли механическим динамометром ДК-100 по два раза, записывали лучший результат. В клинической практике в большинстве случаев проводится форсированная спирометрия. Скорость воздушного потока измеряется во время выполнения пациентом маневра форсированного выдоха. Основными клинически значимыми показателями форсированной спирометрии являются форсированная жизненная емкость легких (ФЖЕЛ), объем форсированного выдоха за 1-ю секунду (ОФВ1) и их соотношение (ОФВ1/ФЖЕЛ). ОФВ1 и ФЖЕЛ измеряли двукратно с помощью сухого спирометра, записывали лучший результат. Рассчитывали относительную силу кисти (силовой индекс (%) = сила кисти (кг) / MT (кг) \times 100%), относительный объем легких и индекс Тиффно (ИТ): отношение ОФВ1 к ФЖЕЛ в норме составляет более 70%, снижение может указывать на обструктивные нарушения.

Статистические расчеты проводились с помощью пакета Statistica 12 (StatSoft, США) и программы Microsoft Excel. Уровень достоверности был признан статистически значимым при р≤0,05. Нормальность распределения оценивали с помощью критерия Шапиро — Уилка. Достоверность различий определяли с помощью непараметрического критерия Манна — Уитни (U-тест), т.к. половина полученных данных имела ненормальное распределение. Данные представлены в виде медианы [нижний квартиль (Q25); верхний квартиль (Q75)], минимума и максимума (Min ÷ Max).

Результаты обследования

При анализе обследованных было показано, что женщины в основной группе были старше, имели достоверно более высокие значения МТ, ОТ, ОБ, ИМТ, ИОТ и ИТБ, чем в контрольной группе, при одинаковых значениях ДТ (*табл. 1*, *puc. 1*).

Таблица 1 Показатели габаритных размеров тела и индексов физического развития у женщин с НАЖБП

Показатели	Представление данных	Гру		
показатели		основная	контрольная	p-value
	Median	53*	40,5	
Возраст, лет	[Q25; Q75]	48; 58	32,5; 44,5	0,000266
	Min ÷ Max	29 ÷ 67	24 ÷ 59	
	Median	165,0	165,3	
Длина тела, см	[Q25; Q75]	159,5; 167,6	161,3; 171,1	0,225443
	Min ÷ Max	150,5 ÷ 172,0	153,0 ÷ 179,2	
	Median	83,0*	66,3	
Масса тела, кг	[Q25; Q75]	77,9; 95,7	59,2; 72,6	0,000004
	Min ÷ Max	67,1 ÷ 128,5	50,8 ÷ 90,6	
Окружность талии, см	Median	102,0*	84,5	
	[Q25; Q75]	100,0; 112,0	76,5; 90,0	0,000001
	Min ÷ Max	83,0 ÷ 130,0	67,0 ÷ 105,0	

Продолжение табл. 1				
	Median	116,0 *	103,0	
Окружность бедер, см	[Q25; Q75]	106,0; 124,0	96,0; 106,5	0,000015
	Min ÷ Max	98,0 ÷ 142,0	89,0 ÷ 113,0	
	Median	0,9*	0,8	
ИТБ	[Q25; Q75]	0,8; 0,9	0,8; 0,9	0,003508
	Min ÷ Max	0,8 ÷ 1,0	0,7 ÷ 0,9	
	Median	0,7*	0,5	
ИОТ (ОТ/ДТ)	[Q25; Q75]	0,6; 0,7	0,4; 0,6	0,000001
	Min ÷ Max	0,5 ÷ 0,8	0,4 ÷ 0,6	
ИМТ (кг/м²)	Median	33,2*	23,9	
	[Q25; Q75]	28,6; 36,7	22,3; 26,4	0,000000
	Min ÷ Max	26,4 ÷ 45,3	19,0 ÷ 34,4	

Примечание для таблиц 1-5.

Данные представлены в виде медианы (Median), 25 и 75 квартилей ([Q25; Q75]), минимума и максимума для каждого значения (Min \div Max); * – достоверные различия от контрольной группы при p≤0,05; p-value – уровень различий между группами (курсив – p≤0,05; обычный шрифт – p>0,05).

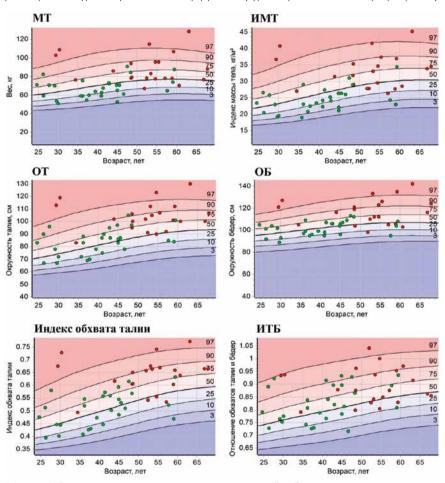


Рисунок 1. Распределение индивидуальных показателей габаритных размеров тела и индексов физического развития основной и контрольной групп на центильных популяционных кривых (красные маркеры – основная группа, зеленые маркеры – группа контроля)

Таблица 2 Показатели компонентного состава тела и некоторых индексов компонентов состава тела (ЖМТ/ДТ и ТМТ/ДТ) у женщин с НАЖБП

Показатели	Представление	Гру	p-value	
	данных	основная	контрольная	p-value
N/	Median	33,9*	22,1	
Жировая масса тела, кг (ЖМТ)	[Q25; Q75]	28,1; 45,5	16,1; 25,8	0,000001
	Min ÷ Max	23,1 ÷ 59,1	10,0÷ 36,4	
Доля ЖМТ,% в МТ	Median	40,9*	32,6	
	[Q25; Q75]	37,5; 46,8	26,8; 35,6	0,000001
	Min ÷ Max	32,9 ÷ 51,5	18,8 ÷ 41,6	

Пациентки в основной группе имели достоверно более высокие значения ЖМТ, доли ЖМТ, ТМТ, АКМ, ВОО, индексов ЖМТ/ДТ и ТМТ/ДТ, а также достоверно более низкие значения доли СММ и индекса ТМТ/ ЖМТ, чем в контрольной группе, при одинаковых значениях доли АКМ, СММ и ВООуд (табл. 2, рис. 2).

Женщины в основной группе имели достоверно более высокие значения общей, внеклеточной и внутриклеточной воды организма в абсолютных значениях, достоверно более низкие значения относительных показателей внеклеточной и внутриклеточной воды, чем в контрольной группе, при одинаковых значениях индексов гидратации — ВКЖ/КЖ и ВКЖ/ОВО (табл. 3).

В основной группе отмечались достоверно более высокие значения индексов жировой, тощей, активной клеточной и скелетно-мышечной массы тела и двойной индекс жировой массы и достоверно более низкие значения двойных индексов тощей, активной клеточной и скелетно-мышечной массы тела, чем в контрольной группе (табл. 4, рис. 3).

Женщины основной группы имели достоверно более высокие балльные значения компонентов ENDO и MESO и достоверно более низкое балльное значение компонента ЕСТО, чем женщины контрольной группы (табл. 5).

В основной группе выявлено 95,2% женщин мезоэндоморфного соматотипа и 4,8 — эндомезоморфного; средний соматотпрофиль группы — мезоэндоморфный, с цифровым обозначением 9,3—7,2—0,2. В контрольной группе выявлено 75% женщин мезоэндоморфного соматотипа, 10,7% — сбалансированного эндоморфного, 7,1% — центрального и 3,6% — мезо-эндо соматотипа; средний соматотпрофиль группы мезоэндоморфный, с цифровым обозначением 6,3—4,4—1,7 (рис. 4, табл. 5).

При оценке антропометрических показателей было показано, что женщины основной группы имели достоверно более высокие показатели напряженного и расслабленного обхватов плеча, окружности грудной

клетки в трех положениях (при максимальном вдохе, максимальном выдохе и в паузе (спокойное состояние)), кожно-жировых складок на спине, на задней и передней поверхности плеча, на предплечье, на животе, над подвздошным гребнем и на бедре, суммы КЖС, средней величины КЖС, абсолютной и относительной жировой массы тела, вычисленной расчетным методом по уравнению Durnin & Wamersley, чем женщины контрольной группы, при одинаковых показателях разницы обхватов плеча, экскурсии грудной клетки, размере кожно-жировой складки на голени (табл. 6).

При оценке физиометрических показателей было показано, что женщины основной группы имели достоверно более низкие показатели относительной силы кисти правой и левой рук, чем женщины контрольной группы, при одинаковых значениях абсолютных показателей динамометрии обеих рук. Также в основной группе имели меньшие показатели ОФВ1 и ФЖЕЛ, чем в контрольной группе, хотя различия не имели статистической значимости.

Рассчитанная ЖЕЛ также была меньше у женщин основной группы (различия не имели статистической значимости). ИТ был выше в контрольной группе (различия не имели статистической значимости) (табл. 7).

Обсуждение результатов

В нашем исследовании было показано, что женщины основной группы отличались от контрольной по компонентному составу тела, антропометрическим и физиометрическим показателям, а также соматотипологическому профилю. У женщин основной группы было выявлено большее количество жировой массы тела, что согласуется с данными, говорящими об ассоциации НАЖБП с избыточной массой тела и ожирением [9]. В рандомизированном исследовании Feng W.-H. и соавт., оценивающем влияние лираглутида, метформина и гликлазида на состав тела у пациентов с сахарным диабетом 2 типа и неалкогольной жировой болезнью печени, группы обследу-

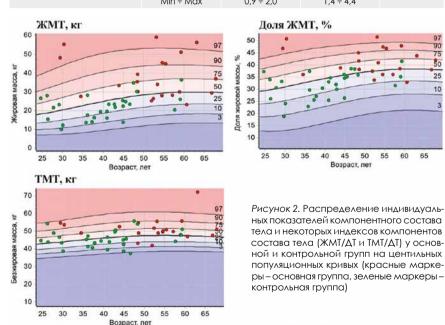
АКМ, кг

45 50 55

35

30

25


20

15

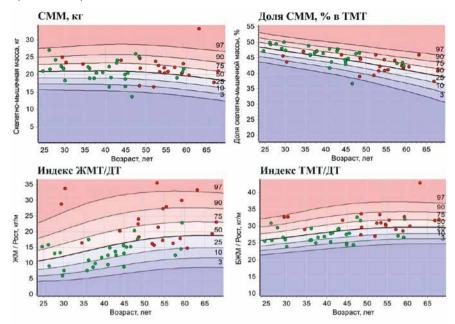
10

Активная клеточная масса,

			Павла	
		50.04	,	жение табл. 2
Тощая (безжировая) масса	Median	50,2*	44,9	
тела, кг	[Q25; Q75]	48,9; 53,7	43,1; 48,5	0,000616
	Min ÷ Max	42,0 ÷ 72,2	37,5 ÷ 55,9	
Aktubuga kantoliliga akgoog	Median	27,2*	24,5	
Активная клеточная масса, кг (АКМ)	[Q25; Q75]	26,2; 29,5	23,1; 26,2	0,000423
, , , , , , , , , , , , , , , , , , ,	Min ÷ Max	22,3 ÷ 36,8	19,9 ÷ 31,2	
	Median	54,6	54,8	
Доля АКМ,% в МТ	[Q25; Q75]	52,2; 55,6	53,2; 55,5	0,693611
	Min ÷ Max	50,3 ÷ 60,6	49,0 ÷ 66,2	
	Median	22,0	21,0	
Скелетно-мышечная масса, кг (СММ)	[Q25; Q75]	20,5; 23,4	19,1; 22,4	0,279759
KI (CIVIIVI)	Min ÷ Max	16,5 ÷ 33,2	13,7 ÷ 27,1	
	Median	42,5*	46,5	
Доля СММ,% в ТМТ	[Q25; Q75]	41,1; 45,0	43,9; 47,9	0,000323
	Min ÷ Max	37,4 ÷ 47,1	36,7 ÷ 50,0	
	Median	1473*	1389	
Величина основного обмена, ккал/сут (ВОО)	[Q25; Q75]	1442; 1549	1343; 1443	0,000392
kkd//cyl (boo)	Min ÷ Max	1320 ÷ 1778	1243 ÷ 1600	
	Median	798	809	
Удельный основной обмен, ккал/сут/м² (ВООуд)	[Q25; Q75]	749; 814	789; 831	0,080541
ккил/суі/м- (вооуд)	Min ÷ Max	692 ÷ 863	702 ÷ 948	
	Median	21,4*	13,1	
Индекс ЖМТ/ДТ	[Q25; Q75]	17,3; 28,1	9,8; 15,3	0,000000
	Min ÷ Max	14,7 ÷ 35,6	6,0 ÷ 22,8	
	Median	31,0*	26,9	
Индекс ТМТ/ДТ	[Q25; Q75]	29,7; 32,7	25,7; 29,2	0,000018
	Min ÷ Max	27,1 ÷ 42,8	0,2 ÷ 32,7	
	Median	1,4*	2,1	
Индекс ТМТ/ЖМТ	[Q25; Q75]	1,1; 1,7	1,8; 2,7	0,000002
	Min ÷ Max	0.9 ÷ 2.0	1.4 ÷ 4.4	

клеточной массы,

Доля


60

№ 00 М 45 Доля АКМ, %

45 50

50

Продолжение рис. 2

емых пациентов рассматривались без гендерного различия, т.е. мужчины и женщины были слиты в единые массивы и их данные не учитывали гендерного различия в компонентном составе тела. Также для оценки эффективности применения препаратов в снижении массы тела данные жировой и тощей массы тела были представлены в абсолютных значениях. Средняя МТ обследуемых пациентов в трех группах была 74,8–81,1 кг,

ИМТ – 26,8–28,1 кг/м², ОТ – 92,6–95,6 см, ЖМТ – 23,3–25,2 кг, ТМТ – 47,6–52 кг; средний возраст в трех группах – 46,3–48,2 года [9]. Эти данные согласуются с результатами нашего исследования.

В исследовании Razmpour F. и соавт. [10] было показано, что окружность живота, окружность талии, окружность груди, жировая масса туловища и индекс массы тела были одними из наиболее важных переменных, ассоциированных с НАЖБП. Разработанные антропометрические критерии с точностью до 82% предсказывали наличие НАЖБП у обследуемых пациентов и предлагались для первичного скрининга и профилактики НАЖБП во взрослой популяции.

В нашем исследовании не было выявлено одновременного увеличения жировой и уменьшения мышечной массы, но в исследовании Miyake T. и соавт. [11] была показана достоверная отрицательная корреля-

Таблица 3 Показатели водных секторов (распределения воды организма) и индексов гидратации у женщин

	Представление	Гру	p-value	
Показатели	данных	основная	контрольная	p-value
	Median	36,8*	32,9	
Общая вода организма, кг	[Q25; Q75]	35,8; 39,3	31,5; 35,5	0,000640
.,	Min ÷ Max	30,7 ÷ 52,9	27,4 ÷ 40,9	
	Median	15,9*	14,0	
Внеклеточная вода, кг	[Q25; Q75]	14,9; 17,4	13,2; 15,2	0,000714
	Min ÷ Max	12,8 ÷ 23,7	11,3 ÷ 17,7	
	Median	21,0*	19,2	
Внутриклеточная вода, кг	[Q25; Q75]	20,6; 21,9	18,2; 20,4	0,000439
вода, кі	Min ÷ Max	17,9 ÷ 29,2	16,1 ÷ 23,2	
	Median	18,5*	21,2	
Доля ВКЖ (%)	[Q25; Q75]	16,9; 19,3	20,0; 22,1	0,000002
	Min ÷ Max	15,8 ÷ 20,5	18,4 ÷ 25,3	
	Median	25,3*	28,7	
Доля КЖ (%)	[Q25; Q75]	22,0; 26,6	27,2; 30,9	0,000003
	Min ÷ Max	19,7 ÷ 28,8	24,4 ÷ 34,2	
	Median	0,740	0,730	
ВКЖ/КЖ	[Q25; Q75]	0,730; 0,770	0,720; 0,760	0,101747
	Min ÷ Max	0,700 ÷ 0,830	0,660 ÷ 0,780	
	Median	0,430	0,420	
BKЖ/OBO	[Q25; Q75]	0,420; 0,440	0,420; 0,430	0,196014
	Min ÷ Max	0,410 ÷ 0,450	0,400 ÷ 0,440	

Таблица 4 Показатели индексов (простых и двойных) компонентов состава тела у женщин

Показатели	Представление	Гр	уппа	p-value
показатели	Д анных	основная	контрольная	p-value
Индекс жировой	Median	13,6*	7,8	
массы тела	[Q25; Q75]	10,7; 17,2	5,9; 9,4	0,000000
(ИЖМ), кг/м²	Min ÷ Max	9,4 ÷ 21,4	3,6 ÷ 14,3	
Индекс тощей	Median	19,3*	16,4	
массы тела	[Q25; Q75]	18,0; 20,1	15,4; 17,4	0,000003
(ИТМ), кг/м²	Min ÷ Max	16,9 ÷ 25,4	14,5 ÷ 20,1	
Индекс	Median	10,1*	9,1	
активной клеточной	[Q25; Q75]	9,9; 11,0	8,2; 9,7	0.000030
массы (ИАКМ), кг/м²	Min ÷ Max	8,7 ÷ 13,0	7,3 ÷ 10,5	0,000000
Индекс	Median	8,2*	7,6	
скелетно-	[Q25; Q75]	7,9; 8,5	7,1; 8,1	0.017604
мышечной массы (ИСММ), кг/м²	Min ÷ Max	6,8 ÷ 11,7	5,9 ÷ 8,9	0,017004
Двойной индекс	Median	0,16*	0,11	
жировой массы тела (ДИЖМ),	[Q25; Q75]	0,14; 0,17	0,10; 0,13	0,000001
1ела (дижмі), 1/м²	Min ÷ Max	0,12 ÷ 0,19	0,07 ÷ 0,16	
Двойной индекс	Median	0,22*	0,25	
тощей массы	[Q25; Q75]	0,20; 0,24	0,22; 0,27	0,003079
тела (ДИТМ), 1/м²	Min ÷ Max	0,18 ÷ 0,27	0,20 ÷ 0,30	
Двойной индекс	Median	0,12*	0,13	
активной	[Q25; Q75]	0,10; 0,13	0,12; 0,14	0.000101
клеточной массы (ДИАКМ), 1/м²	Min ÷ Max	0,09 ÷ 0,15	0,10 ÷ 0,20	0,008131
Двойной индекс	Median	0,10*	0,11	
скелетно-	[Q25; Q75]	0,09; 0,10	0,10; 0,13	0.000010
мышечной массы (ДИСММ), 1/м²	Min ÷ Max	0,07 ÷ 0,11	0,09 ÷ 0,15	0,000012

ционная связь между степенью развития НАЖБП и общей мышечной массой и массой скелетных мышц конечностей, а также достоверная положительная корреляционная связь с жировой массой, отношением массы жира к квадрату роста, площадью висцерального жира и соотношением талии и бедер.

Также было показано увеличение окружностей и величин кожно-жировых складок (на всех измеряемых участках туловища и конечностей, кроме КЖС на голени), что также ассоциировано с увеличением жировой массы тела и ожирением в целом по данным исследования [4].

Уменьшение относительной силы кисти у обследованных нами пациенток с НАЖБП также подтверждено данными аналогичного исследования, показавшего увеличение распространенности НАЖБП на 24% с каждым квартилем уменьшения мышечной силы [12]. В нашем исследовании не было обнаружено саркопенического ожирения и ожирения при нормальной массе тела у пациенток с НАЖБП, хотя некоторые исследования указывают на наличие данного заболевания не только у пациенток с ожирением, но и с нормальной массой тела при скрытом ожирении, ассоциированном со старческой саркопенией и с ожирением при нормальной массе тела у женщин среднего возраста [13-15].

По данным Milić S и соавт. [16], 80% пациентов с НАЖБП страдают ожирением, определяемым как индекс массы тела (ИМТ) >30 кг/м². В нашем исследовании у пациенток группы жирового гепатоза медиана ИМТ определена как 33,2 кг/м² при минимальном и максимальном значениях по группе $26,4 \text{ кг/м}^2 \text{ и } 45,3 \text{ кг/м}^2 \text{ соответственно}$ (табл. 1). При этом в группе было зарегистрировано 8 пациенток (38,1%) с избыточной массой тела за счет жировой массы (ИМТ 25,1-29,9 кг/м²), и 13 пациенток (61,9%) с ожирением: 6 пациенток (28,6%) с ожирением 1-й степени (ИМТ 30-34,9 кг/м²), 4 пациентки (19%) с ожирением 2-й степени (ИМТ 35-39,5 кг/м²) и 3 пациентки (14,3%) с ожирением 3-й степени (ИМТ 40 кг/м^2 и выше).

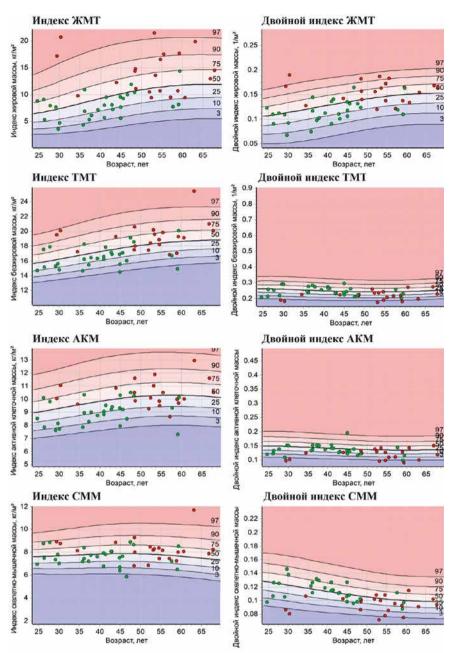


Рисунок 3. Распределение индивидуальных показателей индексов (простых и двойных) компонентов состава тела у женщин основной и контрольной групп на центильных популяционных кривых (красные маркеры – основная группа, зеленые маркеры – группа контроля)

Таблица 5 Балльные значения компонентов соматотипа тела женщин

Показатели	Представление данных	Гру	p-value	
		основная	контроль	p-value
	Median	9,4*	6,0	
Компонент ENDO, баллы	[Q25; Q75]	8,3; 10,3	5,4; 7,5	0,000000
	Min ÷ Max	7,0 ÷ 11,6	3,3 ÷ 9,9	
	Median	7,2*	4,2	
Компонент MESO, баллы	[Q25; Q75]	5,9; 8,4	3,5; 5,2	0,000001
	Min ÷ Max	4,3 ÷ 11,6	2,2 ÷ 7,7	
Компонент ЕСТО, баллы	Median	0,1*	1,5	
	[Q25; Q75]	0,1; 0,1	0,7; 2,5	0,000002
	Min ÷ Max	0,1 ÷ 1,0	0,1 ÷ 4,5	

Таблица 6 Антропометрические показатели тела женщин с НАЖБП

_	Представление	Гру	ппа	
Показатели	данных	основная	контрольная	p-value
	Median	36,3*	30,5	
Обхват правого плеча напряженного, см	[Q25; Q75]	34,0; 38,0	28,5; 32,0	0,000012
	Min ÷ Max	25,0 ÷ 45,0	23,0 ÷ 38,5	
	Median	36,0*	30,0	
Обхват правого плеча расслабленного, см	[Q25; Q75]	33,5; 38,0	28,3; 31,3	0,000007
'	Min ÷ Max	24,5 ÷ 44,0	23,0 ÷ 38,0	
Разница обхватов напряженного	Median	0,5	0,5	
и расслабленного правого	[Q25; Q75]	0,0; 1,0	0,3; 1,0	0,217806
плеча, см	Min ÷ Max	-1,5 ÷ 2,0	-0,5 ÷ 1,5	
	Median	104,0*	90,0	
Окружность грудной клетки (ОГК) в паузе, см	[Q25; Q75]	98,0; 106,0	86,0; 94,0	0,000001
, , ,	Min ÷ Max	90,0 ÷ 127,0	76,0 ÷ 106,5	
	Median	106,0*	92,5	
ОГК на вдохе, см	[Q25; Q75]	103,0; 108,5	89,0; 96,5	0,000000
	Min ÷ Max	94,0 ÷ 127,0	79,0 ÷ 108,0	
	Median	101,0*	88,0	
ОГК на выдохе, см	[Q25; Q75]	96,0; 105,0	83,0; 91,0	0,000001
	Min ÷ Max	88,0 ÷ 125,0	74,5 ÷ 104,0	
Экскурсия грудной клетки	Median	4,0	5,0	
	[Q25; Q75]	3,5; 6,0	4,0; 6,0	0,270856
	Min ÷ Max	2,0 ÷ 9,0	2,0 ÷ 10,0	
	Median	33,0*	21,5	
Кожно-жировая складка (КЖС) на спине под лопаткой, мм	[Q25; Q75]	31,0; 43,0	18,0; 27,0	0,000032
	Min ÷ Max	18,0 ÷ 67,0	5,0 ÷ 41,0	
10.12	Median	39,0*	26,0	
КЖС на задней поверхности плеча над трицепсом, мм	[Q25; Q75]	35,0; 44,0	22,0; 33,5	0,000017
	Min ÷ Max	24,0 ÷ 58,0	16,0 ÷ 46,0	
101/0	Median	31,0*	20,0	
КЖС на передней поверхности плеча над бицепсом, мм	[Q25; Q75]	28,0; 36,0	13,5; 24,0	0,000004
	Min ÷ Max	21,0 ÷ 52,0	2,0 ÷ 37,0	
101/0	Median	18,0*	11,5	
КЖС на передней поверхности предплечья, мм	[Q25; Q75]	16,0; 19,0	9,0; 15,5	0,001369
	Min ÷ Max	7,0 ÷ 28,0	5,0 ÷ 25,0	
101/0	Median	50,0*	35,0	
КЖС на животе (вертикальная), мм	[Q25; Q75]	46,0; 56,0	24,5; 43,0	0,000004
	Min ÷ Max	36,0 ÷ 67,0	10,0 ÷ 54,0	
101/0	Median	33,0*	22,0	
КЖС над подвздошным гребнем, мм	[Q25; Q75]	24,0; 38,0	15,0; 29,5	0,001134
	Min ÷ Max	15,0 ÷ 45,0	5,0 ÷ 46,0	
	Median	47,0*	34,5	
КЖС на бедре, мм	[Q25; Q75]	32,0; 49,0	27,0; 39,5	0,009353
	Min ÷ Max	24,0 ÷ 66,0	17,0 ÷ 49,0	
	Median	26,0	23,0	
КЖС на голени, мм	[Q25; Q75]	23,0; 31,0	21,5; 27,0	0,079521
	Min ÷ Max	8,0 ÷ 36,0	15,0 ÷ 34,0	

Жариковым Ю.О. и соавт. был выпущен ряд работ, касающихся изменений компонентного состава тела при циррозе печени – последней необратимой стадии НАЖБП. Были показаны закономерные гендерные различия в компонентном составе тела пациентов с циррозом – у женщин выявлены большие значения жировой и меньшие - активной клеточной массы по сравнению с мужчинами. При этом с увеличением стадии асцита у пациентов обоих полов уменьшались показатели ЖМТ, АКМ и ФУ [17]. Также компонентный состав тела был ассоциирован со стадией асцита при циррозе печени. Показано, что недостаточное количество жировой и мышечной массы, а также низкие значения фазового угла по результатам биоимпедансометрии могут стать предикторами развития асцита у пациентов с циррозом печени. При этом постепенное снижение активной клеточной массы является прогностически неблагоприятным фактором для прогрессирования асцита у пациентов с циррозом печени [18].

Распространенными осложнениями заболеваний печени на поздних стадиях (цирроз печени) являются саркопения и мальнутриция. Частота саркопении при циррозе печени составляет 30–50% и доходит до 100% у декомпенсированных пациентов. У таких пациентов с целью коррекции, помимо терапии, направленной на элиминацию этиологического фактора, применимы стратегии модификации питания и образа жизни [19].

Заключение

Каждая стадия развития НАЖБП ассоциирована с изменениями в компонентном составе тела. По мере прогрессирования заболевания печени от гепатоза до цирроза с сопутствующим ему асцитом нескольких стадий изменяется пищевое поведение и компонентный состав тела пациентов. При этом если последние стадии НАЖБП проявляются снижением жировой, тощей и мышечной массы тела, то первая стадия — гепатоз (стеатоз), наоборот, сопутству-

ющим фактором имеет повышение жировой массы тела без снижения мышечной массы и силы мышц, увеличение обхватных размеров туловища и конечностей, увеличение величин кожно-жировых складок, увеличение балла компонента эндоморфии в соматотипологической формуле и снижение относительной силы кисти.

Список литературы / References

- Ivashkin V.T., Maevskaya M.V., Zharkova M.S., Kotovskaya Yu.V., Tkacheva O.N., Troshina E.A. et al. Clinical Practice Guidelines of the Russian Scientific Liver Society, Russian Gastroenterological Association, Russian Association of Endocrinologists, Russian Association of Gerontologists and Geriatricians and National Society for Preventive Cardiology on Diagnosis and Treatment of Non-Alcoholic Liver Disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2022; 32 (4): 104–140. [In Russ.]. https://doi.org/1 0.22416/1382-4376-2022-32-4-104-140
- Ding L., Oligschlaeger Y., Shiri-Sverdlov R., Houben T. (2020). Nonalcoholic Fatty Liver Disease. In: von Eckardstein A., Binder C. J. (eds) Prevention and Treatment of Atherosclerosis. Handbook of Experimental Pharmacology. Vol. 270. Springer, Cham. https://doi.org/10.1007/164_2020_352
- Azzu V., Vacca M., Virtue S., Allison M., Vidal-Puig A. Adipose tissue-liver cross talk in the control of whole-body metabolism: implications in nonalcoholic fatty liver disease. Gastroenterology, 2020; 158 (7): 1899–1912. DOI: 10.1053/j. gastro.2019.12.054
- Zaki M., Amin D., Mohamed R. Body composition, phenotype and central obesity indices in Egyptian women with non-alcoholic fatty liver disease. J Complement Integr Med. 2020 Dec 22; 18 (2): 385–390. DOI: 10.1515/jcim-2020-0073. PMID: 34187121
- Tutelyan VA, Nikityuk DB, Burlyaeva EA and others. Using the method of complex anthropometry in sports and clinical practice: guidelines. M.: Sport, 2018. 49 p. (In Russ.).
- Durnin J. V.G.A., Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974; 32: 77–97.
- Siri W. E. Body composition from fluid spaces and density: analyses of methods Techniques for measuring body composition, Natl Acad. Sci. National Res. Council, Washington DC, 1961. P. 223–244.
- Friedl K. E., Westphal K. A., Marchitelli L. J., Patton J. F., Chumlea W. C., Guo S. S. Evaluation of anthropometric equations to assess body-composition changes in young women. Am J Clin Nutr. 2001; 73: 268–275.
- Feng W.-H., Bi Y., Li P., Yin T.-T., Gao C.-X., Shen S.-M. et al. Effects of liraglutide, metformin and gliclazide on body composition in patients with both type 2 diabetes and non-alcoholic fatly liver disease: A randomized trial. Journal Diabetes Investig. 2019; 10 (2): 399–407. DOI: 10.1111/jdi.12888
- Razmpour F., Daryabeygi-Khotbehsara R., Soleimani D. et al. Application of machine learning in predicting non-alcoholic fatty liver disease using anthropometric and body composition indices. Sci Rep. 2023; 13: 4942. https://doi.org/10.1038/ s41598-023-32129-y
- Miyake T., Miyazaki M., Yoshida O. et al. Relationship between body composition and the histology of non-alcoholic fatty liver disease: a cross-sectional study. BMC Gastroenterol. 2021; 21: 170. https://doi.org/10.1186/s12876-021-01748-y
- Kang S., Moon M. K., Kim W., Koo B. K. Association between muscle strength and advanced fibrosis in non-alcoholic fatty liver disease: a Korean nationwide survey. Journal of Cachexia, Sarcopenia and Muscle. 2020; 11 (5). DOI: 10.1002/jcsm.12598
- Han E., Lee Y-H., Ahn S. H., B-S. Cha, Kim S. U., B-W. Lee Appendicular skeletal muscle mass to visceral fat area ratio predicts hepatic morbidities Gut and Liver. 2023; 18 (3). DOI: 10.5009/gnl230238

			Продолж	ение табл. 6
Сумма КЖС, мм	Median	280*	195	
	[Q25; Q75]	255; 310	153; 238	0,000015
	Min ÷ Max	189 ÷ 387	95 ÷ 298	
Средняя КЖС, мм	Median	35,0*	24,4	
	[Q25; Q75]	31,9; 38,8	19,2; 29,8	0,000015
	Min ÷ Max	23,6 ÷ 48,4	11,9 ÷ 37,3	
	Median	35,6*	25,2	
ЖМТ, кг, по Durnin_Wamersley	[Q25; Q75]	32,4; 44,3	20,3; 29,0	0,000000
	Min ÷ Max	27,2 ÷ 56,7	13,2 ÷ 39,3	
ЖМТ,%, по Durnin_Wamersley	Median	42,7*	37,2	
	[Q25; Q75]	40,9; 45,4	33,3; 40,1	0,000007
	Min ÷ Max	38,2 ÷ 49,8	22,4 ÷ 45,1	

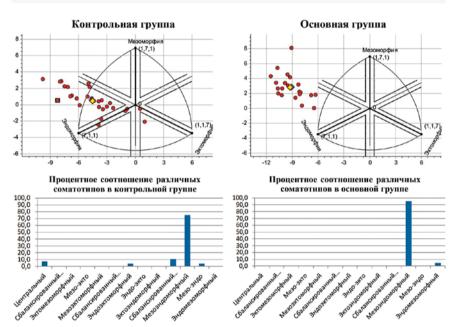


Рисунок 4. Распределение индивидуальных соматотипов у женщин основной и контрольной групп на соматотреугольниках Хит-Картера (красные маркеры – индивидуальные соматотипы; желтый маркер – средний соматотип по группе; зеленый маркер – медианное значение соматотипа по группе)

Таблица 7 Физиометрические показатели женщин

Показатели	Представление	Гру		
показатели	данных	основная	контрольная	p-value
Сила кисти правой руки, кг	Median	30,0	27,5	
	[Q25; Q75]	24,0; 34,0	24,0; 31,5	0,274049
	Min ÷ Max	12,0 ÷ 37,0	18,0 ÷ 35,0	
	Median	25,0	26,0	
Сила кисти левой руки, кг	[Q25; Q75]	21,0; 30,0	21,5; 29,0	0,991923
	Min ÷ Max	12,0 ÷ 36,0	18,0 ÷ 34,0	
	Median	31,9*	41,3	
Силовой индекс правой руки	[Q25; Q75]	28,2; 39,5	35,3; 45,3	0,003078
	Min ÷ Max	9,3 ÷ 52,2	29,6 ÷ 58,5	
	Median	27,2*	39,0	
Силовой индекс левой руки	[Q25; Q75]	23,1; 37,2	33,6; 43,3	0,001800
	Min ÷ Max	9,3 ÷ 46,5	24,3 ÷ 53,1	
	Median	2200	2600	
ОФВ1, мл	[Q25; Q75]	2000; 2700	2350; 2800	0,084797
	Min ÷ Max	1500 ÷ 3100	1700 ÷ 3300	

Продолжение табл. 7				
	Median	2600	2900	
ΦЖΕΛ, ΜΛ	[Q25; Q75]	2500; 3000	2700; 3050	0,165576
	Min ÷ Max	1900 ÷ 3700	1700 ÷ 3700	
	Median	2860	3190	
ЖЕЛрасчетная = ФЖЕЛ + 10%	[Q25; Q75]	2750; 3300	2970; 3355	0,165576
	Min ÷ Max	2090 ÷ 4070	1870 ÷ 4070	
	Median	3488*	3848	
Должная величина ФЖЕЛ	[Q25; Q75]	3188; 3614	3601; 4093	0,001928
	Min ÷ Max	2487 ÷ 4157	3069 ÷ 4606	
	Median	81,9	76,3	
Разница ФЖЕЛ/должнаяФЖЕЛ	[Q25; Q75]	73,7; 87,8	72,1; 81,2	0,262174
	Min ÷ Max	60,3 ÷ 99,5	38,0 ÷ 96,4	
	Median	3891*	4208	
Должная величина ЖЕЛ	[Q25; Q75]	3274; 4070	3754; 4663	0,028378
	Min ÷ Max	2504 ÷ 4558	2988 ÷ 5449	
	Median	81	76	
Разница должной и расчетной величины ЖЕЛ	[Q25; Q75]	72; 89	70; 86	0,270869
	Min ÷ Max	63 ÷ 100	35 ÷ 106	
	Median	76	80	
ОФВ1 от ЖЕЛ	[Q25; Q75]	75; 80	75; 84	0,342074
	Min ÷ Max	60 ÷ 87	53 ÷ 176	
	Median	84	88	
Индекс Тиффно	[Q25; Q75]	83; 88	82; 93	0,342074
	Min ÷ Max	66 ÷ 96	58 ÷ 194	

- 14. Zhang Y, Xiang L, Qi F, Cao Y, Zhang W, Lv T, Zhou X. The metabolic profiles and body composition of non-obese metabolic associated fatty liver disease. Front Endocrinol (Lausanne). 2024; 5 (15): 1322563. DOI: 10.3389/fendo.2024.1322563. PMID: 38375190; PMCID: PMC 10876088.
- 15. Cheah M. C.C., Crane H., George J. Global prevalence, metabolic characteristics, and outcomes of lean-MAFLD: a systematic review and meta-analysis. Hepatol Int. 2025; 19 (3): 607–618. DOI: 10.1007/s12072-025-10801-x, Epub 2025 Mar 14. PMID: 40087205; PMCID: PMC 12137498.
- 16. Milić S, Lulić D, Štimac D. Non-alcoholic fatty liver disease and obesity: Biochemical, metabolic and clinical presentations. World J Gastroenterol. 2014; 20 (28): 9330–9337 PMID: 25071327. DOI: 10.3748/ wjg.v20.i28.9330
- 17. Zharikov Yu.O., Zharkova M.S., Gadzhiakhmedova A. N., Aliyeva A. M., Nikolenko V. N., Ivash-kin V. T. Parameters of the Component Composition of the Body and Their Relationship with the Development of Ascites in Liver Cirrhosis. Russian Journal of Gastroenterology, Hepatology, Coloproctology, 2024; 34 (3): 53–61. (In Russ.), https://doi.or g/10.22416/1382-4376-2024-34-3-53-61
- Zharikov Yu.O., Maslennikov R. V., Zharikova T. S., Gadzhiakhmedova A. N., Alieva A. M., Nikolenko V.N., et al. The relationship between the active cell mass index and complications of liver cirrhosis: ascites and hepatic encephalopathy. Astrakhan medical journal. 2024; 19 (1): 66–75. (In Russ.). https://doi.org/10.17021/1992-6499-2024-1-66-75
- Ostrovskaya A. S., Maevskaya M. V. Sarcopenia and malnutrition in patients with liver diseases. Meditsinskiy sovet = Medical Council. 2023; (18): 35–42. (In Russ.). https://doi.org/10.21518/ ms2023-374

Статья поступила / Received 25.07.2025 Получена после рецензирования / Revised 30.07.2025 Принята в печать / Accepted 31.07.2025

Сведения об авторах

Выборная Ксения Валерьевна, научный сотрудник лаборатории антропонутрициологии и спортивного питания . eLibrary SPIN: 7063-9692. ORCID: 0000-0002-4010-6315

Орлова Светлана Владимировна, д.м.н., проф., зав. кафедрой диетологии и клинической нутрициологии 2 , главный научный сотрудник 3 . E-mail: orlova-sv@rudn.ru. ORCID: 0000-0002-4689-3591

Никитина Елена Александровна, к.м.н., доцент кафедры диетологии и клинической нутрициологии 2 , научный сотрудник 3 , эксперт Методического аккредитационно-симуляционного центра 4 . É-mail: nikitina-ea 1 @rudn.ru. ORCID: 0000-0003-3220-0333

Тарасова Ольга Ивановна, к.м.н., доцент, директор центра изучения печени им. проф. П.П. Огурцова, доцент кафедры госпитальной терапии с курсами эндокринологии, гематологии и $K\Lambda\Delta^2$. E-mail: $tarasova_oi@pfur.ru$. ORCID: 0000-0001-6376-8189

Прокопенко Елена Валерьевна, руководитель отдела развития и сопровождения МИС и сервисов департамента по развитию медицинской деятельности⁶. E-mail: elvprokopenko@gmail.com. ORCID: 0000-0002-3811-9459

Водолазкая Ангелина Николаевна, врач эндокринодог-диетодог⁷ E-mail: drvodolazkaya@gmail.com. ORCID: 0000-0002-5203-1082

Балашова Наталья Валерьевна, к.б.н., доцент кафедры диетологии и клинической нутрициологии 2 , доцент кафедры клинической лабораторной диагностики факультета усовершенствования врачей⁵. E-mail: BalashovaN77@mail.ru. ORCID: 0000-0002-0548-3414

Миносян Илона Сергеевна, врач-гастроэнтеролог центра изучения печени им. проф. П.П. Огурцова КДЦ 2 , аспирант кафедры госпитальной терапии с курсами эндокринологии, гематологии и КЛ Δ^2 . E-mail: 1142220093@rudn.ru. ORCID: 0009-0006-1327-1557

- ¹ ФГБУН «Федеральный исследовательский центр питания и биотехнологии». Москва, Россия
 ² ФГАОУ ВО «Российский университет дружбы народов имени Патриса
- Лумумбы» (РУДН), Москва, Россия
- 3 ГБУЗ «Научно-практический центр детской психоневрологии Департамента здравоохранения г. Москвы», Россия
- 4 ФГБУ «Национальный медицинский исследовательский центр терапии
- и профилактической медицины» Минздрава России, Москва, Россия ⁵ ГБУЗ МО «Московский областной научно-исследовательский клинический институт имени М.Ф. Владимирского», Москва, Россия
- 6 OOO «UHBUTPO» MOCKRO POCCUS
- ⁷ ООО «Медицинский центр Атлас», Москва, Россия

Автор для переписки: Выборная Ксения Валерьевна. E-mail: dombim@mail.ru

Для цитирования: Выборная К.В., Орлова С.В., Никитина Е.А., Тарасова О.И., Прокопенко Е.В., Водолазкая А.Н., Балашова Н.В., Миносян И.С. Особенности компонентного состава тела и физиометрических показателей у жнщин с неалкогольной овой болезнью печени. Медицинский алфавит. 2025; (19): 94–102. https://doi.org/ жировои болезнью печени. Меди! 10.33667/2078-5631-2025-19-94-102

Vybornaya Kseniya V., researcher at Laboratory of Anthroponutrition and Sports Nutrition . eLibrary SPIN: 7063-9692. ORCID: 0000-0002-4010-6315 Orlova Svetlana V., DM Sci (habil.), professor, head of Dept of Dietetics and Clinical Nutritiology², Chief Researcher³. E-mail: rudn_nutr@mail.ru.
ORCID: 0000-0002-4689-3591

Nikitina Elena A., PhD Med, associate professor at Dept of Dietetics and Clinical Nutrition², research fellow³, Expert of the Methodological Accreditation and Simulation Center⁴. E-mail: nikitina-ea1@rudn.ru. ORCID: 0000-0003-3220-0333 **Tarasova Olga I.**, PhD Med, associate professor, director of the Center for the Study of the Liver named after Prof. P. P. Ogurtsov, associate professor at Dept of Hospital Therapy with courses in Endocrinology, Hematology and Clinical Diagnostics². E-mail: tarasova_oi@pfur.ru. ORCID: 0000-0001-6376-8189 **Prokopenko Elena V.**, head of Dept for Development and Maintenance of Medical Information System and Services of Dept for Development of Medical Activities of Invitro LLC⁶. E-mail: elvprokopenko@gmail.com. ORCID: 0000-0002-3811-9459

Vodolazkaya Angelina N., endocrinologist-nutritionist⁷. E-mail: drvodolazkaya@gmail.com. ORCID: 0000-0002-5203-1082 Balashova Natalya V., PhD Bio Sci, assistant professor at Dept of Clinical Laboratory Diagnostics of the Faculty of Advanced Training of Doctors⁵, assistant professor at Dept of Dietetics and Clinical Nutritiology². E-mail: BalashovaN77@mail.ru. SPIN: 2355-6837. Author ID: 832745. ORCID: 0000-0002-0548-3414

Minosyan Ilona S., gastroenterologist at the Center for Liver Research named after prof. P.P. Ogurtsov of Clinical and Diagnostic Center², postgraduate student at Dept of Hospital Therapy with courses in Endocrinology, Hematology and Clinical Diagnostics². E-mail: 1142220093@rudn.ru. ORCID: 0009-0006-1327-1557

- Federal Research Center for Nutrition and Biotechnology, Moscow, Russia
- ² Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), Moscow, Russia
- ³ Scientific and Practical Center for Child Psychoneurology of the Moscow Department of Health, Russia
- ⁴ National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
- ⁵ Moscow Regional Research Clinical Institute named after M.F. Vladimirsky, Moscow, Russia
- 6 LLC "INVITRO", Moscow, Russia 7 LLC "Medical center Atlas", Moscow, Russia

Corresponding author: Vybornaya Kseniya V. E-mail: dombim@mail.ru

For citation: Vybornaya K.V., Orlova S.V., Nikitina E.A., Tarasova O.I., Prokopenko E.V., Vodolazkaya A.N., Balashova N.V., Minosyan I.S. Features of body component composition and physiometric indices in women with non-alcoholic fatty liver disease. Medical alphabet. 2025; (19): 94-102. https://doi.org/10.33667/2078-5631-2025-19-94-102

