- Zhao X, Yu X, Zhang X. Association between Uric Acid and Bone Mineral Density in Postmenopausal Women with Type 2 Diabetes Mellitus in China: A Cross-Sectional Inpatient Study. J. Diabetes Res. 2020; 2020: 3982831. DOI: 10.1155/2020/3982831
- Ibrahim WN, Younes N, Shi Z, Abu-Madi MA. Serum Uric Acid Level is Positively Associated with Higher Bone Mineral Density at Multiple Skeletal Sites Among Healthy Qataris. Front Endocrinol (Lausanne). 2021; 12: 653685. DOI: 10.3389/fendo.2021.653685
- Muka T, de Jonge EA, Kiefte-de Jong JC, Uitterlinden AG, Hofman A, et al. The Influence of Serum Uric Acid on Bone Mineral Density, Hip Geometry, and Fracture Risk: The Rotterdam Study. J. Clin. Endocrinol Metab. 2016; 101 (3): 1113–1122. DOI:10.1210/jc.2015-2446
- Veronese N, Carraro S, Bano G, Trevisan C, Solmi M. et al. Hyperuricemia protects against low bone mineral density, osteoporosis and fractures: a systematic review and meta-analysis. Eur. J. Clin. Invest. 2016; 46 (11): 920–930. DOI:10.1111/eci.12677

Статья поступила / Received 10.11.2024 Получена после рецензирования / Revised 12.11.2024 Принята к публикации / Accepted 12.11.2024

Сведения об авторах

Торопцова Наталья Владимировна, д.м.н., зав. лабораторией остеопороза. E-mail: torop@irramn.ru. Researcher ID: I-9030-2017. Scopus Author ID: 6507457856. eLibrary SPIN: 5650-2058. ORCID: 0000-0003-4739-4302

Добровольская Ольга Валерьевна, к.м.н., н.с. лаборатории остеопороза. E-mail: olgavdobr@mail.ru. Researcher ID: AAF-2921-2021. Scopus Author ID: 57197823569. eLibrary SPIN: 1477-8189. ORCID: 0000-0002-2809-0197

Козырева Мария Витальевна, м.н.с. лаборатории остеопороза. E-mail: epid@irramn.ru. Researcher ID: HHZ-3451-2022. ORCID:0000-0003-0560-3495

Демин Николай Викторович, м.н.с. лаборатории остеопороза. E-mail: epid@irramn.ru. Researcher ID: AAF-3400-2021. Scopus Author ID: 7006802179. ORCID: 0000-0003-0961-9785

ФГБНУ «Научно-исследовательский институт ревматологии им. В. А. Насоновой», Москва, Россия

Автор для переписки: Добровольская Ольга Валерьевна. E-mail: olgavdobr@mail.ru

Для цитирования: Торопцова Н.В., Добровольская О.В., Козырева М.В., Демин Н.В. Минеральная плотность костной ткани и уровень мочевой кислоты у женщин в постменопаузе. Медицинский алфавит. 2024; (29): 20–24. https://doi.org/10.33667/2078-5631-2024-29-20-24

About authors

Toroptsova Natalia V., DM Sci (habil.), head of the Osteoporosis Laboratory. E-mail: torop@irramn.ru. Researcher ID: I-9030-2017. Scopus Author ID: 6507457856. eLibrary SPIN: 5650–2058. ORCID: 0000-0003-4739-4302

Dobrovolskaya Olga V., PhD Med, researcher at the Osteoporosis Laboratory. E-mail: olgavdobr@mail.ru. Researcher ID: AAF-2921-2021. Scopus Author ID: 57197823569. eLibrary SPIN: 1477-8189. ORCID ID: 0000-0002-2809-0197

Kozyreva Maria V., junior researcher at the Osteoporosis Laboratory. E-mail: epid@irramn.ru. Researcher ID: HHZ-3451-2022. ORCID: 0000-0003-0560-3495 **Demin Nikolay V.,** junior researcher at the Osteoporosis Laboratory.

Demin Nikolay V., junior researcher at the Osteoporosis Laboratory.

E-mail: epid@irram.ru. Researcher ID: AAF-3400-2021. Scopus Author ID: 7006802179.

ORCID: 0000-0003-0961-9785

V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia

Corresponding author: Dobrovolskaya Olga V. E-mail: olgavdobr@mail.ru

For citation: Toroptsova N.V., Dobrovolskaya O.V., Kozyreva M.V., Demin N.V. Bone mineral density and uric acid level in postmenopausal women. *Medical alphabet*. 2024; (29): 20–24. https://doi.org/10.33667/2078-5631-2024-29-20-24

DOI: 10.33667/2078-5631-2024-29-24-28

Постковидный синдром как дисфункциональное болевое расстройство: актуальные данные

Е.С. Аронова, Б.С. Белов, Г.И. Гриднева

ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Лаборатория коморбидных инфекций и вакцинопрофилактики, Москва, Россия

РЕЗЮМЕ

Представления о постковидном синдроме (ПКС) как о самостоятельной нозологической единице лежат в основе поиска критериев для установления этого диагноза. К настоящему моменту сложилось представление о двух клинических фенотипах постковидного состояния, протекающих с разным патогенетическим механизмом. Один из них, вероятно, представляет собой последствия перенесенного в ходе COVID-19 повреждения органов и систем и/или ятрогенных факторов. Патогенез другого не вполне ясен, а клинические проявления аналогичны таковым ряда дисфункциональных болевых расстройств, таких как фибромиалгия (РМ) и синдром хронической усталости/ миалический энцефаломиелит. Статья посвящена анализу литературных данных, указывающих на сходство ПКС и РМ. Обоснована необходимость пересмотра критериев диагноза ПКС.

КЛЮЧЕВЫЕ СЛОВА: COVID-19, иммуновоспалительные ревматические заболевания, постковидный синдром, фибромиалгия, хроническая боль.

КОНФЛИКТ ИНТЕРЕСОВ. Исследование не имело спонсорской поддержки. Конфликт интересов отсутствует. Статья подготовлена в рамках научно-исследовательской работы ФГБНУ «Научно-исследовательский институт ревматологии им. В. А. Насоновой», № государственного задания 1021051503137-7.

Post-covid syndrome as a dysfunctional pain disorder: current data

E.S. Aronova, B.S. Belov, G.I. Gridneva

V.A. Nasonova Research Institute of Rheumatology, Laboratory of Comorbid Infections and Vaccine Prevention, Moscow, Russia

SUMMARY

The concept of post-COVID syndrome (PCS) as an independent nosological entity underlies the search for criteria for establishing this diagnosis. To date, there is an idea of two clinical phenotypes of the post-COVID state, occurring with different pathogenetic mechanisms. One of them is probably the consequences of damage to organs and systems and / or iatrogenic factors suffered during COVID-19. The pathogenesis of the other is not entirely clear, and the clinical manifestations are like those of a number of dysfunctional pain disorders, such as fibromyalgia (FM) and chronic fatigue syndrome / myalgic encephalomyelitis. The article is devoted to the analysis of literary data indicating the similarity of PCS and FM. The need to revise the diagnostic criteria for PCS is substantiated.

KEYWORDS: COVID-19, long COVID, immunoinflammatory rheumatic disease, post COVID-19 condition; post-COVID-19 syndrome, fibromyalgia, chronic pain.

CONFLICT OF INTEREST. The study was not sponsored. There is no conflict of interest.

The article was prepared within the framework of V.A. Nasonova Research Institute of Rheumatology, state assignment No. 1021051503137-7.

редставления о постковидном синдроме как о самостоятельной нозологической форме возникли в 2020 г. вскоре после начала пандемии. Однако определение этого состояния было сформулировано Всемирной организацией здравоохранения на год позже. В соответствии с ним ПКС представляет собой состояние, которое возникает у лиц с анамнезом вероятной или подтвержденной инфекции, вызванной вирусом SARS-CoV-2, как правило, в течение 3 месяцев от момента дебюта COVID-19, и характеризуется наличием симптомов на протяжении не менее 2 месяцев, а также невозможностью их объяснения альтернативным диагнозом [1]. При этом может отмечаться как появление симптомов вслед за периодом выздоровления после острой инфекции COVID-19, так и персистенция симптомов с момента первоначально перенесенной болезни. Кроме того, может иметь место рецидивирование симптомов с течением времени.

Так, некоторые пациенты, перенесшие тяжелый COVID-19, в том числе получавшие лечение в отделении интенсивной терапии, сообщают об одышке, усталости и других симптомах. Такие проявления неспецифичны и связаны с остаточным воспалением, повреждением органов, последствиями длительной госпитализации или вентиляции легких [2]. В то же время у других пациентов, перенесших COVID-19 в легкой и среднетяжелой форме, не потребовавшей госпитализации, также отмечается множество гетерогенных симптомов, среди которых наиболее часто указываются утомляемость, нарушения сна, распространенная мышечно-скелетная и головная боль, нейрокогнитивная дисфункция и другие симптомы [3, 4]. Клиническое и патогенетическое сходство этих проявлений ПКС с ноципластическими болевыми состояниями, в частности с фибромиалгией (ФМ), быстро привлекло внимание исследователей. Оба эти состояния характеризуются нарушением функции органов и систем при отсутствии признаков их повреждения.

К настоящему моменту сложилось представление о двух клинических фенотипах постковидного состояния, различающихся межу собой на уровне патогенеза: пациенты с ПКС, перенесшие COVID-19 в тяжелой форме, и пациенты, перенесшие COVID-19 легкой или средней степени тяжести. По данным литературы, среди пациентов с ПКС, перенесших COVID-19 с тяжелым течением, преобладали мужчины в возрасте 55–65 лет [5–7]. В этой группе была выявлена корреляция между выраженностью проявлений ПКС и возрастом пациента, коморбидностью, тяжестью и количеством симптомов COVID-19 [6–8].

При обследовании через год после COVID-19 у трети пациентов отмечались патологические изменения в функциональных дыхательных тестах или отклонения, выявленные путем компьютерной томографии органов грудной клетки, которые коррелировали с тяжестью перенесенного COVID-19 [9, 10]. Для пациентов, перенесших тяжелый COVID-19, было характерно также увеличение частоты сердечно-сосудистых заболеваний [11, 12].

Среди пациентов, перенесших COVID-19 средней или легкой степени тяжести, преобладали женщины (60–75%), средний возраст которых составлял 45 лет. В этой группе не отмечалось достоверной связи между тяжестью COVID-19 и выраженностью симптомов ПКС [13, 14]. Клинические проявления ПКС в этой группе преимущественно затрагивали несколько органов и систем и не сопровождались изменениями в лабораторных и функциональных тестах. По данным крупных когортных исследований, через 1–2 года после COVID-19 основными проявлениями ПКС в этой группе были утомляемость (60–75%), мышечные или суставные боли (40–60%), одышка (40–60%), когнитивные нарушения (35–55%), головные боли (20–55%) и нарушения сна (20–50%) [13–15].

По мнению некоторых авторов, в настоящее время назрела насущная необходимость создания новой системы классификационных критериев ПКС, которые можно было бы использовать в сравнительных эпидемиологических исследованиях и с целью изучения иммунологических маркеров этого заболевания. Данная потребность представляется обусловленной указанными выше клиническо-патогенетическими различиями между группами пациентов: в первой группе постковидное состояние может объясняться известными и нозологически детерминированными заболеваниями, во второй клинические проявления менее специфичны, а отклонения, как правило, не определяются с помощью лабораторных или функциональных тестов, в то же время оказывая значительное влияние на качество жизни пациента. В последнем случае ПКС протекает аналогично уже известным дисфункциональным болевым синдромам, таким как синдром хронической усталости/миалгический энцефаломиелит (СХУ/МЭ) и ФМ. К настоящему времени накоплены литературные данные, указывающие на клиническое и патогенетическое сходство этих состояний.

Так, утомляемость и постнагрузочное недомогание, самые частые симптомы COVID-19 и ФМ (80–90%), являются основными проявлениями этого заболевания [16–18]. В британском национальном когортном исследовании

было показано, что основным проявлением ПКС является утомляемость, которая может стать причиной длительной утраты трудоспособности. Следующими по значимости симптомами стали депрессия и когнитивные нарушения [16]. По данным литературы, постнагрузочное недомогание, характерное для пациентов с ПКС, также является одним из основных проявлений ФМ.

По данным исследования, включавшего 465 пациентов с ПКС, в среднем через 71 неделю после заражения 58% пациентов соответствовали диагностическим критериям ФМ [19]. Средний возраст участников составил 48 лет, 86% были женщинами, у 78% отмечалась утомляемость, у 59% — миалгии, а у 58% — когнитивные нарушения. Аналогичный отчет продемонстрировал, что в среднем через 255 дней после инфекции SARS-CoV-2 31% пациентов с ПКС соответствовали критериям ФМ. Через 402 дня (медиана) этот показатель составил 19% [20]. Аналогичные данные получены в других исследованиях [21, 22].

Согласно литературным источникам, между ФМ и ПКС существует сходство в отношении других клинических проявлений. Так, генерализованные миалгии и/или артралгии присутствуют у 40–60% пациентов с ПКС [23]. Когнитивные нарушения («мозговой туман») наблюдались при ФМ у 50–90% пациентов, а при ПКС – у 40–60% [24–28]. Среди них наиболее часто встречались нарушения концентрации и дефицит памяти. При оценке через 8 месяцев после COVID-19 «мозговой туман» чаще отмечался у женщин, пациентов с сопутствующими психическими заболеваниями и у перенесших COVID-19 в легкой форме [26]. Наличие утомляемости и ее выраженность коррелировали с когнитивными нарушениями, оба этих показателя увеличивались через 36 месяцев [27, 28]. В ходе двухлетнего исследования было выявлено, что у пациентов, перенесших COVID-19 в легкой форме, частота утомляемости выросла с 34% через 9 месяцев до 53 % к концу периода наблюдения [29, 30].

В литературе имеются сведения о том, что у 8–15% пациентов, перенесших инфекцию SARS-CoV-2, наблюдаются хронические головные боли, которые продолжаются в течение шести месяцев и более. При этом не было обнаружено корреляции между тяжестью COVID-19 и возникновением головной боли. Новая головная боль у пациентов с сохраняющимися симптомами может протекать в виде мигренозной или боли напряжения и является одним из пяти наиболее распространенных симптомов ПКС. Распространенность и тяжесть хронических головных болей после COVID-19 коррелируют с наличием ранее существовавших хронических цефалгий [31].

По данным двух метаанализов, распространенность нарушений сна у пациентов с ПКС составляла 45–56% [32, 33]. Нарушения сна сохранялись у 35–50% пациентов в течение периода от 6 месяцев до 2 лет после перенесенного COVID-19 и коррелировали с тяжестью инфекции [34, 35]. Характерные проявления включали нерегулярный сон, частые пробуждения, дневную сонливость и бессонницу. Наличие ранее существовавшего обструктивного апноэ сна было ассоциировано с повышенным риском развития ПКС [36].

По данным другого систематического обзора и метаанализа, распространенность депрессивных и тревожных расстройств среди пациентов с ПКС составила 23 % [37]. Ряд исследований продемонстрировали статистически значимое повышение частоты депрессии и тревожности среди пациентов с ПКС по сравнению с контрольной группой [38, 39]. Так, в крупном отчете из США зафиксировано трехкратное увеличение риска развития тяжелой депрессии и генерализованного тревожного расстройства у пациентов с ПКС по сравнению с контролем [38].

Аналогично ФМ при ПКС не наблюдается значимых отклонений маркеров острой фазы воспаления или ауто-антител [39, 40]. В ряде исследований у пациентов с ПКС были выявлены аномальные уровни различных цитокинов и хемокинов, а также изменения в регуляторных Т-клетках и В-клетках, аналогичные тем, которые наблюдаются при фибромиалгии [41, 42].

В отличие от иммуновоспалительных ревматических заболеваний ПКС, по-видимому, не связан с системным воспалительным процессом. В литературе описываются «незначительные» или «субклинические» повреждения органов после легкого или среднетяжелого течения COVID-19 [43, 44]. При этом уровень маркеров воспаления оставался в пределах нормы, а отклонения, выявленные методами инструментальной диагностики, не соответствовали выраженности клинических проявлений.

Между ФМ и ПКС предполагается также наличие общих патогенетических факторов. Так, реактивация эндогенных вирусов, преимущественно латентного вируса Эпштейна – Барр, наблюдалась при ФМ [45] и ПКС [46, 47]. Аналогично при обоих этих состояниях выявлены сходные изменения в составе желудочно-кишечного микробиома [48, 49].

Нарушения аминокислотного обмена, в том числе триптофана и серотонина, исследовались у пациентов с ФМ [50] и ПКС [51]. Полученные данные указывают на то, что снижение уровня серотонина, выявленное у пациентов с ПКС, рассматривается как потенциальный механизм, связывающий нарушенную кишечную абсорбцию триптофана с дисфункцией гиппокампа и ухудшением памяти [52].

Нарушения со стороны вегетативной нервной системы широко распространены у пациентов с ФМ и ПКС [53, 54]. В обоих случаях характерно наличие синдрома постуральной ортостатической тахикардии, что подтверждается наличием нейропатии мелких волокон при биопсии нерва [55]. Указанные расстройства ассоциируются с хронической болью у пациентов с ФМ, а также с постнагрузочным недомоганием и непереносимостью физических нагрузок как при ФМ, так и при ПКС [56, 57].

Ранее было убедительно доказано наличие типичных для ФМ нейрогормональных нарушений, в том числе снижение уровня сывороточного кортизола [58]. Накапливаются данные об аналогичных изменениях при ПКС. В одном исследовании низкий уровень кортизола сыворотки был наиболее значимым предиктором развития ПКС, а в другом — обнаружена корреляция между выраженностью усталости при ПКС и уровнем кортизола [59, 60].

В недавних исследованиях, посвященных ПКС, были выявлены нейроиммунные нарушения, аналогичные таковым при ФМ, включая образование аутоантител к мишеням в автономной и центральной нервной системе, а также изменения в объеме белого и серого вещества головного мозга [61]. При ФМ и ПКС также отмечается

патология функциональных связей между разными областями центральной нервной системы [62–64]. По данным литературы, через три-четыре месяца после COVID-19 у пациентов отмечается уменьшение толщины серого вещества и нарушение связи между отделами головного мозга по сравнению с группой контроля [62]. В другом исследовании отмечалось снижение функциональной связности между височными и подкорковыми областями мозга пациентов с ПКС по сравнению с контрольной группой [63]. При оценке через 6–9 месяцев после COVID-19 была выявлена корреляция между наличием патологии функциональных связей между разными отделами центральной нервной системы и когнитивными расстройствами, при этом ассоциация с тяжестью перенесенной инфекции отсутствовала [64].

На экспериментальных моделях было показано, что активация клеток микроглии может рассматриваться как потенциальный механизм развития хронической боли, усталости и когнитивных дисфункций при ФМ и связанных с ней состояниях [65]. Многоточечная позитронноэмиссионная томография выявила значительно повышенную активность глиальных клеток у пациентов с ФМ по сравнению с контрольной группой, что коррелировало с выраженностью усталости [66]. У пациентов с ФМ отмечалось также повышение антител к сателлитным глиальным клеткам, которое, однако, не ассоциировалось с высвобождением цитокинов или системным воспалением [67]. Исследования на животных и людях показали, что после инфекции SARS-CoV-2 легкой степени тяжести сохранялась дисрегуляция центральной нервной системы, включая нарушение функции гиппокампа и повышенные уровни цитокинов/хемокинов в спинномозговой жидкости, которая коррелировала с когнитивными нарушениями [68].

Исходя из вышеизложенного, ПКС представляет собой гетерогенное патологическое состояние, характеризующееся сложным патогенезом и отсутствием четких диагностических критериев. В настоящее время с целью унификации применяется определение ПКС, сформулированное ВОЗ в 2021 г. По мнению ряда исследователей, назрела необходимость пересмотра этого определения в связи с появлением новых данных, благодаря которым достигнуто более ясное понимание возможных механизмов патогенеза, клинических проявлений и прогноза ПКС. Накопленные данные позволяют обоснованно дифференцировать состояния, связанные с нозологически детерминированными поражениями органов и систем, возникшими после COVID-19 (такими как тромбоз, миокардит, пневмония и др.), и постковидные состояния с неспецифическими клиническими проявлениями, патогенез которых не вполне ясен. Последние предлагается относить к ПКС и применять диагностические критерии, используемые для уже известных заболеваний, протекающих с аналогичной клиникой и патогенезом, таких как СХУ/МЭ, ФМ и др.

Значительный разброс показателей распространенности ПКС обусловлен различиями в используемых критериях диагностики. В одном исследовании, при разных подходах к определению случая, ПКС определялся в диапазоне от 1,2 до 13% [69]. Авторами отмечалось недостаточное соответствие между различными определениями случаев,

а также отсутствие корреляции между этими определениями и самодиагностикой пациентов, что в значительной степени затрудняло стратификацию исследуемых групп и структурирование данных [70].

Таким образом, существующая нозологическая неопределенность создает угрозу стигматизации ПКС как психосоматического расстройства. Аналогичные затруднения возникали ранее при определении СХЕ/МЭ и ФМ, поскольку эти дефиниции основываются на клинических симптомах, широко распространенных в общей популяции (усталость, миалгии, головные боли, нарушения сна и настроения и пр.), а не на специфических биомаркерах или патологических изменениях в органах. Следовательно, необходимость нового определения ПКС обусловлена современными требованиями к дальнейшим научным изысканиям.

Список литературы / References

- World Health Organisation (WHO). A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021. https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition_Clinical_case_definition-2021.1 (Accessed:14th September, 2024).
- Davis HE, McCorkell L, Vogel JM. et al. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023; 21: 133–146. https://doi.org/10.1038/ s41579-022-00846-2
- Choutka J, Jansari V, Hornig M. et al. Author Correction: Unexplained post-acute infection syndromes. Nat. Med. 2022; 28:911–923. https://doi.org/10.1038/s41591-022-01952-7
- Fitzcharles M-A, Cohen SP, Clauw DJ. et al. Nociplastic pain: towards an understanding of prevalent pain conditions. Lancet. 2021; 397: 2098–2110. DOI: 10.1016/S0140-6736 (21) 00392-5
- Shen Q, Joyce EE, Ebrahimi OV. et al. COVID-19 illness severity and 2-year prevalence of physical symptoms: an observational study in Iceland, Sweden, Norway and Denmark. Lancet Reg Health Eur. 2023 Oct 27; 35: 100756. DOI: 10.1016/j.lanepe.2023.100756
- Huang C, Huang L, Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2023; 401 (10393): e21–e33. DOI: 10.1016/S0140-6736 (23) 00810-3
- Huang L, Li X, Gu X. et al. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. Lancet Respir Med. 2022; 10: 863–76. DOI: 10.1016/S2213-2600 (22) 00126-6
- Kelly JD, Curteis T, Rawal A. et al. SARS-CoV-2 post-acute sequelae in previously hospitalised patients: systematic literature review and meta-analysis. Eur. Respir. Rev. 2023; 32: 220254. DOI: 10.1183/16000617.0254-2022
- Lee JH, Yim JJ, Park J. Pulmonary function and chest computed tomography abnormalifies 6–12 months after recovery from COVID-19: a systematic review and meta-analysis. Respir. Res. 2022; 23: 233. DOI: 10.1186/s12931-022-02163-x
- Alilou S, Zangiabadian M, Pouramini A. et al. Radiological Findings as Predictors of COVID-19 Lung Sequelae: A Systematic Review and Meta-analysis. Acad Radiol. 2023; 30 (12): 3076–3085. DOI: 10.1016/j.acra.2023.06.002
- Wang W, Wang CY, Wang SI, Wei JC. Long-term cardiovascular outcomes in COVID-19 survivors among non-vaccinated population: A retrospective cohort study from the TriNetX US collaborative networks. EClinicalMedicine. 2022; 53: 101619. DOI: 10.1016/j. eclinm.2022.101619
- Bowe B, Xie Y, Al-Aly Z. Postacute sequelae of COVID-19 at 2 years. Nat. Med. 2023; 29: 2347–2357. https://doi.org/10.1038/s41591-023-02521-2
- Heidemann C, Sarganas G, Du Y. et al. Long-term health consequences among individuals with SARS-CoV-2 infection compared to individuals without infection: results of the population-based cohort study CoMoLo Follow-up. BMC Public Health. 2023; 23: 1587. DOI: 10.1186/s12889-023-16524-8
- Gouraud C, Thoreux P, Ouazana-Vedrines C. et al. Patients with persistent symptoms after COVID-19 attending a multidisciplinary evaluation: characteristics, medical conclusions, and satisfaction. J. Psychosom. Res. 2023;174: 111475. DOI: 10.1016/j. jpsychores.2023.111475
- Whitaker M, Elliott J, Chadeau-Hyam. et al. Persistent COVID-19 symptoms in a community study of 604,434 people in England. Nat. Commun. 2022; 13: 1957. DOI: 10.1038/ s41467-022-29521-z
- Walker S, Goodfellow H, Pookamjanamorakot P. et al. Impact of fatigue as the primary determinant of functional limitations among patients with post-COVID- 19 syndrome: a cross-sectional observational study. BMJ Open. 2023; 13 (6): e069217. DOI: 10.1136/ bmjopen-2022-069217
- Townsend L, Dyer AH, Jones K. et al. Persistent fatigue following SARS- CoV-2 infection is common and independent of severity of initial infection. PLoS ONE. 2020; 15 (11): e0240784. DOI: 10.1371/journal.pone.0240784
- Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023; 21: 133–46. DOI: 10.1038/s41579-022-00846-2
- Jason LA, Dorri JA. ME/CFS and post-exertional malaise among patients with Long COVID. Neurol. Int. 2023; 15: 1–11. DOI: 10.3390/neurolint15010001
- Reuken PA, Besteher B, Finke K. et al. Longterm course of neuropsychological symptoms and ME/CFS after SARS-CoV-2-infection: a prospective registry study. Eur. Arch Psychiatry Clin. Neurosci. 2023; Aug 16. DOI: 10.1007/s00406-023-01661-3
- Bonilla H, Quach TC, Tiwari A. et al. Myalgic encephalomyelitis/chronic fatigue syndrome is common in post-acute sequelae of SARS-CoV-2 infection (PASC): results from a post-COVID-19 multispecialty clinic. Front Neurol. 2023; 14: 1090747. DOI: 10.3389/fneur.2023.1090747
- Legler F, Meyer-Arndt L, Modl L. et al. Long-term symptom severity and clinical biomarkers in post-COVID-19/chronic fatigue syndrome: results from a prospective observational cohort. EClinicalMedicine. 2023; 63: 102146. DOI: 10.1016/j.eclinm.2023.102146

- Goldenberg DL. Applying lessons from rheumatology to better understand Long COVID. Arthritis Care Res. 2024; 76 (1): 49–56. https://doi.org/10.1002/acr.25210
 Ceban F, Ling S, Lui LMW. et al. Fatigue and cognitive impairment in post-COVID-19
- syndrome: a systematic review and meta-analysis. Brain. Behav. Immun. 2022; 101: 93–135. DOI: 10.1016/j.bbi.2021.12.020
- 25. Nicotra A, Masserini F, Calcaterra F. et al. What do we mean by long COVID? A scoping review of the cognitive sequelae of SARS-CoV-2 infection. Eur. J. Neurol. 2023; 30 (12): 3968–78. https://doi.org/10.1111/ene.16027
- 26. Kao J, Frankland PW. COVID fog demystified. Cell. 2022; 185: 2391–3. DOI: 10.1016/j. cell.2022.06.020
- Perez Giraldo GS, Ali ST, Kang AK. et al. Neurologic manifestations of long COVID differ based on acute COVID-19 severity. Ann Neurol. 2023; 94: 146–59. DOI: 10.1002/ ana.26649
- 28. Ariza M, Cano N, Segura B. et al. COVID-19 severity is related to poor executive function in people with post-COVID conditions. J. Neurol. 2023; 270: 2392–408. DOI: 10.1007/ s00415-023-11587-4
- Mateu L, Tebe C, Loste C. et al. Determinants of the onset and prognosis of the post-COVID-19 condition: a 2-year prospective observational cohort study. Lancet Reg Health. 2023; 23: 100724. https://doi.org/10.1016/j.lanepe.2023.100724.
- Whiteside DM, Basso MR, Naini SM. et al. Outcomes in post-acute sequelae of COVID-19 (PASC) at 6 months post-infection Part 1: cognitive functioning. Clin. Neuropsychol. 2022; . 36: 806–28. DOI: 10.1080/13854046.2022.2030412
- 31. Rodrigues AN, Dias ARD, Paranhos ACM, et al. Headache in Iona COVID as disabling condition: a clinical approach. Front Neurol. 2023; 14: 1149294. DOI: 10.3389/ fneur.2023.1149294
- 32. Seighali N, Abdollahi A, Shafiee A. et al. The global prevalence of depression, anxiety, and sleep disorder among patients coping with Post COVID-19 syndrome (long COVID): a systematic review and meta-analysis. BMC Psychiatry. 2024; 24 (1): 105. DOI: 10.1186/ s12888-023-05481-6
- Chinvararak C, Chalder T. Prevalence of sleep disturbances in patients with long COVID assessed by standardised questionnaires and diagnostic criteria: a systematic review and meta-analysis. J. Psychosom. Res. 2023; 175: 111535. DOI: 10.1016/j.jpsychores.2023.111535
- 34. Merikanto I, Dauvilliers Y, Chung F. et al. Sleep symptoms are essential features of long-COVID Comparing healthy controls with COVID-19 cases of different severity in the international COVID sleep study (ICOSS-II). J. Sleep. Res. 2023; 32 (1): e13754. DOI: 10.1111/jsr.13754
- 35. Tanski W, Tomasiewicz A, Jankowska-Polanska B. Sleep disturbances as a consequence
- of long-COVID 19. J. Clin. Med. 2024; 13 (3): 839. https://doi.org/ 10.3390/jcm13030839

 36. Mandel HL, Colleen G, Abedian S, et al. Risk of post-acute sequelae of SARS-CoV-2 infection associated with pre-coronavirus disease obstructive sleep apnea diagnoses: an electronic health record-based analysis from the RECOVER initiative. Sleep. 2023; 46 (9): zsad126. DOI: 10.1093/sleep/zsad126
- 37. Xie Y, Xu E, Al-Aly Z. Risks of mental health outcomes in people with COVID-19: cohort
- Ale Y., AU E., AFANY Z. KISKS OF mention frequent outcomes in people with COVID-19: Conord study. BMJ, 2022; 376: e068993. DOI: 10.1136/bmj-2021-068993. Zhang Y, Chinchilli VM, Ssentongo P. et al. Association of Long COVID with mental health disorders: a retrospective cohort study using real-world data from the USA. BMJ Open. 2024; 14 (2): e079267. https://doi.org/10.1136/bmjopen-2023-079267. Sneller MC, Liang CJ, Marques AR. et al. A longitudinal study of COVID-19 sequelae and immunity; baseline findings. Ann Intern Med. 2022; 175: 989-79, DOI: 10.7326/M21-4905.
- Peluso MJ, Thomas IL, Munter SE, et al. Lack of antinuclear antibodies in convalescent coronavirus disease 2019 patients with persistent symptoms. Clin. Infect. Dis. 2022; 74 (11): 2083-2084. DOI: 10.1093/cid/ciab890
- Phetsouphanh C. et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 2022; 23: 210–6. https://doi. org/10.1038/s41590-021-01113-x
- Muri J, Cecchinato V, Cavalli A. et al. Autoantbodies against chemokines post-SARS-CoV-2 infection correlate with disease course. Nat. Immunol. 2023; 24: 604-611. DOI: 10.1038/s41590-023-01445-w
- Petersen EL, Gobling A, Adam G. et al. multi-organ assessment in mainly non-hospitalized individuals after SARS-CoV-2 infection: the Hamburg City Health Study COVID programme. Eur. Heart J. 2022; 43: 1124–37. DOI: 10.1093/eurheartj/ehab914
- Dennis A, Cuthbertson DJ, Wootton D. et al. Multi-organ impairment and long COVID: a 1 year prospective, longitudinal study. J. R. Soc. Men. 2023; 11: 97–112. DOI: 10.1177/01410768231154703
- Duffy C, Pridgen WL, Whitley RJ. Gastric herpes simplex virus type 1 infection is associated with functional gastrointestinal disorders in the presence and absence of comorbid fibromyalgia: a pilot case-control study. Infection. 2022; 50: 1303–11. DOI: 10.1007/s15010-022-01823-w
- Peluso MJ, Deveau TM, Munter SE. et al. Chronic viral coinfections differentially affect the likelihood of developing long COVID. J. Clin. Invest. 2023; 133: e163669. DOI: 10.1172/JCI163669
- Shafiee A, Teymouri Athar M. et al. Reactivation of herpesviruses during COVID-19: a systematic review and meta-analysis. Rev Med Virol. 2023; 33: e2437. DOI: 10.1002/rmv.2437

- 48. Minerbi M, Fitzcharles A. Gut microbiome: pertinence in fibromyalgia. Clin. Exp. Rheumatol. 2020; 38; \$99-104.
- Yeoh Y, Zuo T, Lui G, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021; 70: 698–706. DOI: 10.1136/gutjnl-2020-323020
- Groven N, Reitan S, Fors E. et al. Kynurenine metabolites and ratios differ between chronic fatigue syndrome, fibromyalgia, and healthy controls. Psychoneuroendocri-nology, 2021; 131: 105287. DOI: 10.1016/j.psyneuen.2021.105287
- 51. Holmes E, Wist J, Masuda R. et al. Incomplete systemic recovery and metabolic phenoreversion in post-acute-phase nonhospitalized COVID-19 patients: implications for assessment of post-acute COVID-19 syndrome, J. Proteome Res. 2021; 20: 3315–29, DOI: 10.1021/acs.jproteome.1c00224
- Wong AC, Devason AS, Umana IC. et al. Serotonin reduction in post-acute sequelae of viral infection. Cell. 2023; 186 (22): 4851–4867.e20. https://doi.org/10.1016/j. cell.2023.09.013
- Garcia-Hernandez A, de la Coba P, Reyes Del Paso GA. Central sensitization pain and autonomic deficiencies in fibromyalgia. Clin. Exp. Rheumatol. 2022; 40: 1202–9.
- 54. Larsen NW, Stiles LE, Shaik R. et al. Characterization of autonomic symptom burden in long COVID: a global survey of 2,314 adults. Front Neurol. 2022; 13: 1012668. DOI: 10.3389/fneur.2022.1012668
- 55. Stella AB, Furlanis G, Frezza NA. et al. Autonomic dysfunction in post-COVID patients with and without neurological symptoms: a prospective multidomain observational study. J. Neurol. 2022; 269: 587–96. DOI: 10.1007/s00415-021-10735-y
- Natelson B, Lin J, Blate M. et al. Physiological assessment of orthostatic intolerance in chronic fatigue syndrome. J. Transl. Med. 2022; 20: 95. DOI: 10.1186/s12967-022-03289-8 Malkova AM, Shoenfeld Y. Autoimmune autonomic nervous system imbalance and
- conditions: chronic fatigue syndrome, fibromyalgia, silicone breast implants, COVID and post-COVID syndrome, sick building syndrome, post-orthostatic tachycardia syndrome, autoimmune diseases and autoimmune/inflammatory syndrome induced by adjuvants. Autoimmun Rev. 2023; 22 (1): 103230. https://doi.org/10.1016/j.autrev.2022.103230
- Beiner E, Lucas V, Reichert J, et al. Stress biomarkers in individuals with fibromyalgia syndrome: a systematic review with meta-analysis. Pain. 2023; 164: 1416–27. DOI: 10.1097/j.pain.00000000000002857
- Su Y, Yuan D, Chen DG. et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022; 185: 881–95. DOI: 10.1016/j.cell.2022.01.014
- Lee JS, Choi Y, Joung JY. et al. Clinical and laboratory characteristics of fatiguedominant long-COVID subjects: a cross-sectional study. Am. J. Med. 2024 Feb 6: \$0002–9343 (24) 00057-3. DOI: 10.1016/j.amjmed.2024.01.025
- Ryabkova V, Gavrilova N, Poletaeva A. et al. Autoantibody correlation signatures in fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome: association with symptom severity. Biomedicines. 2023; 11: 257. Doi: 10.3390/biomedicines11020257
- Huang Y, Ling G, Manyande A. et al. Brain imaging changes in patients recovered from COVID-19: a narrative review. Front Neurosci. 2022: 16. https://doi.org/ 10.3389/ fnins.2022.855868
- Churchill NW, Roudala E, Chen JJ. et al. Effects of post-acute COVID-19 syndrome on the functional brain networks of non-hospitalized individuals. Front Neurol. 2023; 14: 1136408. https://doi.org/10.3389/fneur.2023.1136408
- Voruz P, Cionca A, de Alcantara IJ. et al. Brain functional connectivity alterations associated with neuropsychological performance 6–9 months following SARS-CoV-2 infection. Hum Brain Mapp. 2023; 44: 1629–46. DOI: 10.1002/hbm.26163
- Wakatsuki K, Kiryu-Seo S, Yasui M. et al. Repeated cold stress, an animal model for fibromyalgia, elicits proprioceptor-induced chronic pain with microglial activation in mice. J. Neuroinflammation. 2024; 21: 25. DOI: 10.1186/s12974-024-03018-6
- Albrecht DS, Forsberg A, Sandstrom A. et al. Brain glial activation in fibromyalgia a multi-site positron emission tomography investigation. Brain Behav Immun. 2019; 75: 72–83. DOI: 10.1016/j.bbi.2018.09.018
- Krock E, Morado-Urbina CE, Menezes J. et al. Fibromyalgia patients with elevated levels of anti-satellite glia cell immunoglobulin G antibodies present with more severe symptoms. Pain. 2023; 164: 1828–40. DOI: 10.1097/j.pain.0000000000002881
- Ferń andez-Castañeda A, Lu P, Geraghty AC. et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell. 2022; 185: 2452–2468. https://doi. org/10.1016/j.cell.2022.06.008
- Coste J, Delpierre C, Richard JB. et al. Prevalence of long COVID in the general adult population according to different definitions and sociodemographic and infection characteristics. A nationwide random sampling survey in France in autumn 2022. Clin Microbiol Infect. 2024; 30 (7): 924–929. DOI: 10.1016/j.cmi.2024.03.020 Hoeg TB, Ladhani S, Prasad V. How methodological pitfalls have created widespread
- misunderstanding about long COVID. BMJ Evid Based Med. 2024; 29 (3): 142–146. DOI: 10.1136/bmjebm-2023-112338

Статья поступила / Received 08.10.2024 Получена после рецензирования / Revised 19.10.2024 Принята к публикации / Accepted 19.10.2024

Сведения об авторах

Аронова Евгения Сергеевна, к.м.н., научный сотрудник. E-mail: eugpozd@mail.ru. ORCID: 0000-0002-1833-5357

Белов Борис Сергеевич, д.м.н., зав. лабораторией. E-mail: belovbor@yandex.ru. ORCID: 0000-0001-7091-2054

Гриднева Галина Игоревна, к.м.н., научный сотрудник. E-mail: gigridneva@mail.ru. ORCID: 0000-0002-0928-3911

ФГБНУ «Научно-исследовательский институт ревматологии им. В. А. Насоновой», Лаборатория коморбидных инфекций и вакцинопрофилактики, Москва, Россия

Автор для переписки: Аронова Евгения Сергеевна. E-mail: eugpozd@mail.ru

Для цитирования: Аронова Е.С., Белов Б.С., Гриднева Г.И. Постковидный синдром как дисфункциональное болевое расстройство: актуальные данные. Медицинский алфавит. 2024; (29): 24-28. https://doi.org/10.33667/2078-5631-2024-29-24-28

About authors

Aronova Evgenia S., PhD Med, researcher. E-mail: eugpozd@mail.ru. ORCID: 0000-0002-1833-5357

Belov Boris S., DM Sci (habil.), head of Dept. E-mail: belovbor@yandex.ru. ORCID: 0000-0001-7091-2054

Gridneva Galina I., PhD Med, researcher. E-mail: gigridneva@mail.ru. ORCID: 0000-0002-0928-3911

V. A. Nasonova Research Institute of Rheumatology, Laboratory of Comorbid Infections and Vaccine Prevention, Moscow, Russia

Corresponding author: Aronova Eugenia S. E-mail: eugpozd@mail.ru

For citation: Aronova E.S., Belov B.S., Gridneva G.I. Post-covid syndrome as a dysfunctional pain disorder: current data. Medical alphabet. 2024; (29): 24-28. https://doi.org/10.33667/2078-5631-2024-29-24-28

