


Е.В. Черкасова

Влияние нутриционной поддержки на развитие и исход инфекционных осложнений неходжкинских лимфом после трансплантации гемопоэтических стволовых клеток

Т.Ю. Семиглазова

- **Е.В. Черкасова**, врач-онколог отделения гематологии и химиотерапии с палатой интенсивной терапии и реанимации 1
- **Т.Ю. Семиглазова**, д.м.н., доцент, зав. отделом в.н.с. научного отдела инновационных методов терапевтической онкологии и реабилитации 1 , проф. кафедры онкологии 2

В. А. Загоруйко, клинический ординатор отделения химиотерапии и инновационных технологий 1

Л.В. Филатова

¹ФГБУ «Национальный медицинский исследовательский центр онкологии имени Н.Н. Петрова» Минздрава России, г. Санкт-Петербург ²ФГБОУ ВО «Северо-Западный государственный медицинский университет имени И.И. Мечникова» Минздрава России, г. Санкт-Петербург

В. А. Загоруйко

Impact of nutritional support on development and outcome of infectious complications of non-Hodgkin's lymphomas after hematopoietic stem-cell transplantation

E.V. Cherkasova, T. Yu. Semiglazova, L.V. Filatova, V.A. Zagoruyko

National Medical Research Centre of Oncology n.a. N.N. Petrov, North-Western State Medical University n.a. I.I. Mechnikov; Saint Petersburg, Russia

Резюме

В статье представлен обзор современных рекомендаций по нутриционной поддержке больных, перенесших аутологичную трансплантацию гемопоэтических стволовых клеток, и оценена взаимосвязь риска и частоты развития инфекционных осложнений при наличии недостаточности питания.

КЛЮЧЕВЫЕ СЛОВА: **неходжкинские лимфомы**, **нутриционная поддержка**, трансплантация гемопоэтических стволовых клеток, инфекционные осложнения.

Summar

This article provides an overview of current nutritional support recommendations for autologous hematopoietic stem cell transplantation recipients, and the impact of nutritional status on infectious complications frequency.

Keywords: non-Hodgkin lymphomas, nutritional support, hematopoietic stem cell transplantation, infectious complications

Актуальность

Трансплантация гемопоэтических стволовых клеток (ТГСК) — это один из наиболее эффективных методов лечения гематологических и онкологических заболеваний [8].

Многочисленные осложнения, развивающиеся при ТГСК, среди которых панцитопения, тошнота, рвота, мукозит, энтеропатия, инфекция различной этиологии (бактериальная, вирусная, грибковая) и интерстициальный пнев-

монит, оказывают агрессивное воздействие на организм и могут вызывать грубые нарушения и сдвиги в гомеостазе и метаболизме человека [1].

Генерализованные инфекционные осложнения при ТГСК часто приводят к развитию синдрома полиорганной недостаточности, формированию белково-энергетической недостаточности, которые сопряжены с увеличением летальности. В связи с этим нутри-

ционная поддержка (НП) в составе сопроводительной терапии играет важную роль, необходимость которой зависит прежде всего от вида трансплантации: при аутологичной ТГСК необходимость в парентеральном питании (ПП) возникает у 37% больных, при аллогенной ТГСК — у 92% [6]. Также определена зависимость риска развития недостаточности питания от выбора режима кондициониро-

вания (табл. 1) [1]. Стоит отметить, что гипотрофия (индекс массы тела [ИМТ] ниже $18,5 \text{ кг/м}^2$) и ожирение (ИМТ выше 30 кг/м^2) являются факторами риска развития осложнений и увеличения смертности у пациентов, перенесших ТГСК [6, 21].

Таким образом, обеспечение НП является неотъемлемой частью лечения больных при ТГСК и направлено на снижение риска возникновения осложнений, связанных с проведением режима кондиционирования, а также самой ТГСК [23].

Нутриционная поддержка при ТГСК

Недостаточность питания — известный самостоятельный фактор неблагоприятного прогноза при ТГСК [4]. В настоящий момент не представлены исследования, оценивающие эффективность ТГСК в зависимости от наличия или отсутствия НП. Скорее всего, это связано с невозможностью рандомизации пациентов с недостаточностью питания при ТГСК по этическим соображениям. Данные обзора исследований, оценивающих связь между недоеданием и клиническим исходом, представлены в табл. 2.

Из-за противоречивых данных нет единого мнения относительно того, какие параметры лучше всего определяют недостаточность питания. В большинстве исследований вследствие частого клинического применения для оценки недостаточности питания использовались индекс массы тела (ИМТ) и количество потерянного веса. Тем не менее ни ИМТ, ни потеря веса сами по себе не могут считаться адекватными параметрами для оценки недостаточности питания. В исследовании Р. Liu и соавт. было обнаружено, что исходно большинство пациентов, получающих лечение методом ТГСК, не имели недостаточности питания [19]. Однако в процессе режима кондиционирования и в раннем посттрансплантационном периоде большинство пациентов столкнулись с проблемой развития недостаточности питания от умеренной до тяжелой степени. В настоящий момент активно ведутся исследования по изучению необходимости определения состава тела пациента. W. H. Navarro и соавт.

Таблица 1 Влияние режима кондиционирования при аутологичной ТГСК на риск развития недостаточности питания [1]

Низкий риск	Высокий риск
ICE	ВЕАМ
Мелфалан 140 мг/м ²	Мелфалан 200 мг/м ²

Примечание: ICE — ифосфамид, карбоплатин, этопозид; BEAM — кармустин, этопозид, цитарабин, мелфалан.

продемонстрировали значительно повышенный риск смертности у пациентов с низкой массой тела, однако небольшой избыточный вес являлся более благоприятным фактором по сравнению с группой пациентов, имеющих нормальный вес. Зная, что низкая мышечная и высокая жировая массы связаны с худшим прогнозом, логично предположить, что увеличение мышечной массы должно быть ассоциировано с лучшим прогнозом у данной группы пациентов [25]. Тем не менее ни одно исследование не выявило связи между проведением лечебной физкультуры с повышением общей выживаемости (ОВ) пациентов [35].

В 2017 году были опубликованы результаты систематического обзора, проведенного A. Baumgartner и соавт., в который было включено 13 исследований с участием 18167 пациентов [5]. Во всех исследованиях, посвященных наблюдению за пациентами после проведения ТГСК, сообщалось о потере веса во время проведения ТГСК в диапазоне 5-10% от исходного ИМТ или 5-10% от массы тела до проведения ТГСК. В обшей сложности шесть исследований, в которых участвовало большинство пациентов (49%), также показали отрицательную связь между недоеданием (определяемым по низкому ИМТ, равному $18,5 \text{ кг/м}^2$) и клиническим исходом. В исследованиях, проведенных G. T. Sucak и соавт., С. Т. Rieger и соавт., а также M. Habjibabaie и соавт., не сообщалось о значительных негативных влияниях недостаточности питания до проведения ТГСК, но эти исследования отличались небольшой выборкой пациентов [13, 32, 26]. Данные о том, что недостаточность питания имеет связь с уменьшением ОВ у пациентов при ТГСК, также подтвердились в результатах исследования, проведенного

W. H. Navarro и соавт. (относительный риск [OP] = 2,23; 95% ДИ: 1,17-4,25; p = 0,014) [25].

Пациенты, проходящие интенсивные схемы кондиционирования для ТГСК, имеют повышенный риск развития инфекций, связанных с пищевыми продуктами. Одним из способов профилактики возникновения инфекционных осложнений стало применение низкомикробной диеты. Центр по контролю над заболеваниями разработал список продуктов, которых пациенту, перенесшему ТГСК, следует избегать [28].

Однако в 2015 году М.В. Sonbol и соавт. провели мета-анализ, определяющий эффективность нейтропенической диеты (НД) по сравнению со стандартной больничной диетой. В исследование были включены три небольших рандомизированных контролируемых исследования и одно обсервационное исследование [30]. Сравнивая две группы, соотношение рисков развития осложнений (лихорадка, инфекционные осложнения) было значительно выше ($p \le 0.007$) у пациентов, находящихся на НД, по сравнению с группой стандартной больничной диеты. Также включенное обсервационное исследование оценивало влияние НД на развитие осложнений у пациентов при ТГСК [33]. В исследовании сравнивались пациенты, которые получили вместо НД модифицированную больничную диету (без сырого мяса, рыбы, неочищенных свежих фруктов и непастеризованных молочных продуктов). Результаты показали более высокую частоту развития инфекций у пациентов, получающих НД, по сравнению с модифицированной группой. Следовательно, НД не дает преимущества по сравнению со стандартной больничной диетой, а также может увеличить риск возникновения инфекций.

Таблица 2 Обзор исследований, оценивающих связь между недоеданием и клиническим исходом

Авторы	Число пациентов (n)	Дизайн исследования	Первичные конечные точки	Вторичные конечные точки
S. Fuji и соавт. [11]	12050	Ретроспективное обсервационное исследование (уровень III)	ОВ: ниже в группе со сниженным весом (HR = 1,10; 95% ДИ: 1,02–1,19; p = 0,018) Риск рецидива: выше в группе со сниженным весом (HR = 1,16; 95% ДИ: 1,06–1,28; p = 0,002)	
м. Habjibabaie и соавт. [13]	192	Проспективное обсервационное исследование (уровень III)	ОВ: нет разницы (р = 0,327) Смертность, связанная с трансплантацией: нет разницы (р = 0,123) Риск рецидива: нет разницы (р = 0,629)	Более позднее приживление нейтрофилов в группе сниженного веса (p = 0,010)
W. H. Navarro и соавт. [25]	4215 (373 из которых аутологичные ТГСК)	Ретроспективное обсервационное исследование (уровень III)	ОВ: ниже в группе со сниженным весом (ДИ: 1,28–2,89; р = 0,002) Смертность, связанная с трансплантацией: выше в группе со сниженным весом (ДИ: 1,17–4,25; р = 0,014) Риск рецидива: выше в группе со сниженным весом (ДИ: 1,20–3,54; р = 0,009)	
H.M. Sommacal и соавт. [29]	91	Нерандомизированное контролируемое исследование, частично ретроспективное (уровень III)	ОВ: нет разницы TRM: не оценивался Риск рецидива: не оценивался	Нет статистической разницы между группами по времени пребывания в стационаре, развитию инфекции и развитии РТПХ
G. T. Sucak и соавт. [32]	71	Ретроспективное обсервационное исследование (уровень III)	ОВ: нет разницы Смертность, связанная с трансплантацией: нет зависимости от ИМТ Риск рецидива: не оценивался	
С. Т. Rieger и соавт. [26]	180	Проспективное обсервационное исследование (уровень III)	ОВ: нет ассоциации с потерей веса Смертность, связанная с трансплантацией: не оценивалась Риск рецидива: не оценивался	Нет связи потери веса и частоты развития РТПХ или влияния на приживление нейтрофилов

Исторически, несмотря на большой риск развития осложнений и высокую стоимость, ПП остается предпочтительным методом НП при ТГСК во многих трансплантационных центрах. Существует несколько исследований, которые оценивали различия между использованием энтерального питания (ЭП) и ПП (табл. 3). В проспективном когортном исследовании 94 из 121 пациента были первоначально включены в группу ЭП, но позже, из-за невозможности применения ЭП, 31 пациент нуждался в ПП [27]. НП в виде ЭП в общей сложности получал 61 пациент (50% всех пациентов). Исследование показало лучшие клинические результаты в группе ЭП в отношении ОВ, приживления нейтрофилов и острого развития реакции «трансплантат против хозяина» (РТПХ). В исследовании, проведенном R. Guièze и соавт., ЭП было связано с более низкой средней продолжительностью

лихорадки, сниженной потребностью в эмпирической противогрибковой терапии, более низкой частотой замены центрального венозного катетера (ЦВК) и более низкой частотой перевода в отделение интенсивной терапии. По данным обзора Cochrane (Cochrane Collaboration), использование ПП также ассоциировано с повышенным риском возникновения инфекционных осложнений в виде катетер-ассоциированных инфекций [24].

Некоторые авторы рекомендуют использовать ПП только у пациентов с тяжелым мукозитом (3—4-й степени), колитом или при неконтролируемой рвоте [7], причем ЭП предпочтительнее при отсутствии этих осложнений [2].

В настоящий момент в современной литературе обсуждается вопрос влияния новых пищевых компонентов на иммунную систему. На сегодняшний день ни одно рандомизированное контролируемое исследова-

ние не продемонстрировало влияния таких пищевых компонентов, как омега-3 жирные кислоты, витамин С и микроэлементы, на ОВ или риск возникновения инфекционных осложнений. В исследовании, проведенном S. Fuji и соавт., добавление к питанию глутамина не повлияло на ОВ пациентов, перенесших ТГСК, однако было выявлено снижение выраженности симптомов мукозита и частоты развития РТПХ [11]. Их результаты соответствуют мета-анализу, проведенному Н. Kota, R. S. Chamberlain в 2017 году [17]. В исследовании, представленном S. Iyama и соавт., добавление глутамина к НП позволило снизить риск возникновения диареи [20]. Более старые исследования показали повышенный риск возникновения рецидива заболевания при приеме глутамина, который не был обнаружен ни в исследовании S. Iyama и соавт., ни в более позднем мета-анализе [17].

Таблица 3 Обзор исследований по оценке ЭП, ПП и влияния НД на клинический исход

Авторы	Число пациентов (n)	Дизайн исследования	Первичные конечные точки	Вторичные конечные точки		
R. Guièze и соавт. [12]	56	Ретроспективное когортное исследование (уровень III)	ОВ: нет разницы	Больше инфекционных осложнений в группе ПП (p = 0,0024) Более частое применение противогрибковой терапии при ПП (p = 0,0069) Более частая замена ЦВК в группе ПП (p = 0,036)		
D. Seguy и соавт. [27]	121	Проспективное когортное исследование (уровень II)	ОВ: выше в группе ЭП (HR = 0,2; 95% ДИ: 0,05–0,77; p = 0,019)	Более раннее приживление нейтрофилов при ЭП (p = 0,004) Меньше трансфузий тромбоцитов при ЭП (p = 0,004) Меньше трансфузий при ЭП (p = 0,004) Ниже риск развития РТПХ при ЭП (p = 0,009) Более позднее приживление тромбоцитов при ПП (p = 0,04)		
Оценка влияния НД						
S. Trifilio и соавт. [33]	726	Ретроспективное обсервационное исследование (уровень III)	OB: нет разницы (p = 0,58)	Меньше инфекционных осложнений в группе стандартной больничной диеты (p = 0,027) Больше инфекционных осложнений в группе НД (p = 0,042)		

Инфекционные осложнения при ТГСК

Несмотря на огромное количество вариантов антимикробной терапии, инфекции остаются причиной значительной заболеваемости и смертности после ТГСК [10]. Международная кооперативная группа по антимикробной терапии Европейского общества по изучению и лечению рака проанализировала 1049 эпизодов нейтропении у больных гемобластозами и показала, что основными очагами инфекции были: кровоток — 34%, ротовая полость — 22%, респираторный тракт (преимущественно пневмонии) — 15 %, кожа и мягкие ткани — 13 %, желудочно-кишечный тракт — 7%, внутрисосудистые катетеры и флебиты — 5%, мочевыделительная система — 3 %, прочие — 2 % [14].

Режимы кондиционирования при ТГСК повреждают слизистые оболочки, что приводит к нарушению анатомических барьеров, вызывают развитие иммунодефицита [3, 36]. В настоящий момент остается неясной роль микробиоты в развитии и течении инфекционных осложнений. Систематический обзор A. Staffas и соавт. показал, что микробиота играет роль в переваривании пищи, а также важна для производства короткоцепочечных жирных кислот (бутирата, пропионата и ацетата), которые используются в качестве источника энергии для эпителиальных клеток кишечника [31]. До настоящего времени ни в одном исследовании не оценивалось влияние пробиотиков по сравнению с плацебо на снижение риска развития осложнений. В данный момент опубликованы результаты пилотного исследования, в котором было показано, что применение лактобактерий у детей и подростков, перенесших ТГСК, безопасно [18]. Необходимо проведение двойных слепых многоцентровых рандомизированных исследований для определения влияния применения пробиотиков на ОВ и развитие осложнений у пациентов, перенесших ТГСК.

После завершения проведения ТГСК происходит длительный период восстановления организма реципиента, который в этот период наиболее восприимчив к развитию инфекционных осложнений. Восстановление иммунитета после ТГСК происходит в три этапа: фаза перед приживлением (менее 30 дней после ТГСК); ранняя фаза после приживления (30–100 дней после ТГСК); поздняя фаза после приживления (более 100 дней после ТГСК) [22, 16]. Каждая из них характеризуется определенным дефектом защиты хозяина с различным риском развития присоединения инфекций (табл. 4).

В последнее десятилетие изменения в тактике лечения и симптоматической терапии неизбежно привели к смене рекомендаций по профилактике инфекционных осложнений у пациентов при ТГСК. Несмотря на эти достижения, инфекционные осложнения остаются основной при-

чиной смерти у 8% пациентов при аутологичной ТГСК и у 17–20% при аллогенной ТГСК.

Профилактика возникновения инфекционных осложнений

Важным компонентом, влияющим на развитие инфекционных осложнений, является вид НП. Как было указано выше, данные показывают тенденцию к уменьшению числа осложнений при использовании ЭП по сравнению с ПП. Также установлено, что ЭП оказывает положительное влияние на трофику слизистой оболочки, которая, как известно, ограничивает транслокацию бактерий и ограничивает последующее распространение инфекции.

Возникновение грибковых инфекций по-прежнему играет важную роль в заболеваемости и смертности у пациентов при ТГСК. В качестве профилактической меры развития грибковых инфекций как при аллогенной, так и аутологичной ТГСК, в большинстве случаев назначается флуконазол в дозе 200-400 мг в сутки от начала кондиционирования до приживления трансплантата. Также для лечения грибковых инфекций в рекомендациях ESCMID (European Society for Clinical Microbiology and Infectious Diseases) 2012 года предлагается профилактическое использование эхинокандинов (анидулафунгин, каспофунгин и микафунгин), что может приводить к формированию резистентности к данной группе

Фазы после проведения ТГСК	Фаза 1: ранняя фаза перед приживлением (до 30 дней)	Фаза 2: ранняя фаза после приживления (30–100 дней)	Фаза 3: поздняя фаза после приживления (более 100 дней)
Риски, связанные с данной фазой	Нейтропения, снижение защитных функций естественных барьеров (мукозит, ЦВК)	Снижение защитных функций иммунной системы	РТПХ (алло-ТГСК) Высокий риск прогрессирования и рецидива основного заболевания (для ауто-ТГСК)
Бактерии	Грамотрицательная флора (Bacteria enteric) Грамположительная флора (Streptococcus viridans) Clostridium dificile	Грамотрицательная флора (Bacteria enteric) Грамположительная флора	Инкапсулированные бактерии (Streptococcus pneumoniae, Haemophilus influenza и др.)
Грибы	Candida spp. Aspergillus spp.	Aspergillus spp. Грибы-аскомицеты (Pneumocystis jirovecii)	Aspergillus spp. Грибы-аскомицеты (Pneumocystis jirovecii)
Вирусы	Вирус простого герпеса (ВПГ)	Вирус Эпштейна-Барр (ВЭБ) Цитомегаловирус (ЦМВ) Вирус герпеса человека 6-го типа	Вирус Эпштейна-Барр (ВЭБ) Цитомегаловирус (ЦМВ) Вирус ветряной оспы

препаратов [34]. Учитывая недостаточную эффективность лечения грибковых инфекций при ТГСК, проводятся исследования с применением цитотоксических лимфоцитов, на которых находятся антигены против Aspergillus, Candida, Fusarium и других грибковых инфекций [9].

В соответствии с рекомендациями NCCN в качестве противовирусной профилактики рекомендуется назначение ацикловира, фамцикловира или валацикловира. Пациенты с выраженным иммунодефицитом имеют высокий риск возникновения угрожающих жизни осложнений, связанных с вирусом ЭБВ. Помимо ЭБВ-инфекции, в посттрансплантационный период угрозу представляют и другие вирусы — ЦМВ, аденовирус (АВ) и герпес-вирус шестого типа. Предтрансплантационный скрининг является также важной опцией в качестве профилактики возникновения ЦМВ-инфекции у пациентов после ТГСК. В качестве еще одной опции для профилактики возникновения вирус-ассоциированных осложнений показана возможность использования цитолитических Т-лимфоцитов, направленных на элиминацию нескольких вирусов одновременно. В настоящее время созданы 3- и 5-вирусоспецифические Т-клетки, которые поражают несколько видов вирусов (ЭБВ, аденовирус, ЦМВ), что позволяет быстро и безопасно восстанавливать вирусоспецифический иммунитет больных [15].

Заключение

ТГСК является эффективным методом лечения, который часто ассоциируется с большим количеством осложнений. Обусловленные иммуносупрессией вследствие применения режимов кондиционирования, метаболические нарушения наряду с инфекционными осложнениями часто провоцируют развитие дефицита питания. Эти осложнения в свою очередь ведут к более длительному реабилитационному периоду, снижению ОВ.

Для выбора своевременной и оптимальной схемы НП необходима оценка нутритивного статуса больного. К сожалению, в настоящий момент не существует единого протокола оценки нутритивного статуса и алгоритма планирования активной НП.

В настоящий момент ЭП является предпочтительным методом НП, несмотря на то, что ПП остается основной частью сопроводительной терапии пациентов, однако ассоциируется с развитием инфекционных осложнений. Также нет никаких данных об эффективности применения НД в отношении меньшего риска развития инфекционных осложнений и увеличения ОВ пациентов.

В настоящее время в литературе недостаточно данных о влиянии различных схем НП на исход и развитие инфекционных осложнений. Однако изучение и разработка НП для коррекции недостаточности питания у пациентов с инфекционными осложнениями, перенесших ТГСК, и последующая интеграция ее в клиническую практику, несомненно, имеют большую значимость.

Список литературы

- Atkins L. et al. Implementing and sustaining an evidence-based nutrition service in a haematology unit for autologous stem cell transplant patients // Support. Care Cancer. 2019. V. 27, N3. P. 951–958.
- August D. A., Huhmann M. B. A.S.P.E.N. Clinical guidelines: Nutrition support therapy during adult anticancer treatment and in hematopoietic cell transplantation // J. Parenter. Enter. Nutr. 2009. V. 33, N.S. P. 472–500.
- Balletto E., Mikulska M. Mediterranean Journal of Hematology and Infectious Diseases Bacterial Infections in Hematopoietic Stem Cell Transplant Recipients // Mediterr J Hematol Infect Dis www. mihid.ora Open J. Syst. 2015. V. 7. N. 1. P. 12-13.
- Baumgartner A. et al. Association of nutritional parameters with clinical outcomes in patients with acute myeloid leukemia undergoing haematopoietic stem cell transplantation // Ann. Nutr. Metab. 2016. V. 69, N.2. P. 89–98.
- Baumgartner A. et al. Revisiting nutritional support for allogeneic hematologic stem cell transplantation — A systematic review // Bone Marrow Transplant. Nature Publishing Group, 2017. V. 52, N4. P. 506–513.
- Bearman S.I, Nieto Y. C.P.J. High-dose chemotherapy and autologous transplantation followed by non-myeloablative allogeneic transplantation: separating cytoreduction from adoptive immunotherapy // Blood. 2000. V. 96. N I. P. 1767.
- Bozzetti F. et al. ESPEN Guidelines on Parenteral Nutrition: Non-surgical oncology // Clin. Nutr. Flsevier I td. 2009. T. 28. N.4. P. 445-454.
- Cohen J., Maurice L. Adequacy of nutritional support in pediatric blood and marrow transplantation // J. Pediatr. Oncol. Nurs. 2010. V. 27. N 1. P. 40-47.
- Deo S. S., Gottlieb D. J. Adoptive T-cell therapy for fungal infections in haematology patients // Clin. Transl. Immunol. Nature Publishing Group, 2015. V. 4, N8. P. 40–41.
- Espinoza J.L., Wadasaki Y., Takami A. Infection complications in hematopoietic stem cells transplant recipients: Do genetics really matter? // Front. Microbiol. 2018. V. 9. N. I. P. 10–11.
- Fuji S. et al. Systematic Nutritional Support in Allogeneic Hematopoietic Stem Cell Transplant Recipients // Biol. Blood Marrow Transplant. Elsevier Inc., 2015. V. 21, N10. P. 1707–1713.
- Guièze R. et al. Enteral versus parenteral nutritional support in allogeneic haematopoietic stem-cell transplantation // Clin. Nutr. Elsevier Ltd, 2014. V. 33, N3. P. 533–538.

НУТРИДРИНК КОМПАКТ ПРОТЕИН

Инновация в специализированном питании для онкологических больных

Помогает сгладить негативное влияние инверсии вкуса у пациентов с онкологическим заболеванием

ОХЛАЖДАЮЩИЙ ВКУС

Освежающие красные фрукты содержат производные ментола, которые дают эффект охлаждения. Помогает сгладить ощущение жжения у пациентов, проходящих лучевую терапию.

СОГРЕВАЮЩИЙ ВКУС

Горячий тропический имбирь содержит согревающие вещества естественного происхождения, такие же, как в остром перце. Помогает сгладить ощущение металлического привкуса во рту у пациентов, проходящих химиотерапию.

НЕЙТРАЛЬНЫЙ ВКУС

Предназначен для пациентов, которым необходимо уменьшить дополнительные раздражители на фоне болезни и проводимой терапии.

Адрес: Россия, 143421, Московская обл., Красногорский район, 26-й км автодороги «Балтия», бизнес-центр «Рига Ленд», строение 1. Телефон: +7 (495) 228 33 88. Узнайте больше на www.nutricia-oncology.ru, www.nutricia-medical.ru

СГР Нутридринк Компакт Протеин с нейтральным, охлаждающим фруктово-ягодным и согревающим вкусом имбиря и тропических фруктов СГР: RU.77.9932.004.E.005181.11.18 от 22.11.2018

ВОЗРАСТНЫЕ ОГРАНИЧЕНИЯ: Нутридринк Компакт Протеин, предназначен для взрослых (старше 18 лет). Нутридринк Компакт Протеин показан пациентам с недостаточностью питания или риском ее развития.

МАТЕРИАЛ ПРЕДНАЗНАЧЕН ДЛЯ СПЕЦИАЛИСТОВ СИСТЕМЫ ЗДРАВООХРАНЕНИЯ.

- Habjibabaie M. et al. The relationship between body mass index and outcomes in leukemic patients undergoing allogeneic hematopoietic stem cell transplantation // Clin. Transplant. 2012. V. 26, N I. P. 149–155.
- 14. Hematology: national leadership/ edited by O. A. Rukavitsyn M.: GEOTAR-Media. 2017.—784 p.
- Ifigeneia Tzannou A.M.L. Preventing stem cell transplantation-associated viral infections using T-cell therapy // Immunotherapy. 2015. V.118, N24. P. 6072-6078.
- Justyna Ogonek, et al. Immune reconstitution after hematopoietic stem cell transplantation // Hematop. Stem Cell Transplant. Pediatr. Hematol. 2016. V.7, N November. P. 371–383.
- Kota H., Chamberlain R.S. Immunonutrition Is Associated With a Decreased Incidence of Graft-Versus-Host Disease in Bone Marrow Transplant Recipients: A Meta-Analysis // J. Parenter. Enter. Nutr. 2017. V.41, N8. P. 1286–1292.
- Ladas E. J. et al. The safety and feasibility of probiotics in children and adolescents undergoing hematopoietic cell transplantation // Bone Marrow Transplant. Nature Publishing Group, 2016. V.51, N.2. P. 262–266.
- Liu P. et al. Comprehensive evaluation of nutritional status before and after hematopoietic stem cell transplantation in 170 patients with hematological diseases // Chinese J. Cancer Res. 2017. V.28, N6. P. 626–633.
- Lyama S. et al. Efficacy of enteral supplementation enriched with glutamine, fiber, and oligosaccharide on mucosal injury following he-

- matopoietic stem cell transplantation // Case Rep. Oncol. 2014. V.7, N3. P. 692–699.
- Majhail N.S. et al. High prevalence of metabolic syndrome after allogeneic hematopoietic cell transplantation // Bone Marrow Transplant. 2009. V.43. N I. P. 49–54.
- Marcel R. M. van den Brink, Enrico Velardi M.-A.P. Immune reconstitution following stem cell transplantation // Hematology. 2015. V.45, N6. P. 1093–1101.
- Maurizio Muscaritoli et al. Nutritional and metabolic support in patients undergoing bone marrow transplantation // Am. J. Clin. Nutr. 2002. V.2, N2. P. P. 89–98.
- Murray S., Pindoria S. Nutrition support for bone marrow transplant patients. Cochrane Database of Systematic Reviews. Issue 1. 2009. V.4, N1. P. 65–71.
- Navarro W.H. et al. Obesity does not preclude safe and effective myeloablative hematopoietic cell transplantation (HCT) for acute myelogenous leukemia (AML) in adults // Biol. Blood Marrow Transplant. Elsevier Ltd, 2010. V.16. N 10. P. 1442–1450.
- Rieger C.T. et al. Weight Loss and Decrease of Body Mass Index during Allogeneic Stem Cell Transplantation Are Common Events with Limited Clinical Impact // PLoS One. 2015. V.10, N 12. P. 5-6.
- Seguy D. et al. Better outcome of patients undergoing enteral tube feeding after myeloablative conditioning for allogeneic stem cell transplantation // Transplantation. 2012. V.94, N.3. P. 287–294.
- 28. Slater S., Maziart R.T. Blood and Marrow Transplant Handbook. 2015. P. 81–83.

- Sommacal H.M. Clinical impact of systematic nutritional care in adults submitted to allogeneic hematopoietic stem cell transplantation. 2012. P. 334–338.
- 30. Sonbol M.B. et al. The Effect of a Neutropenic Diet on Infection and Mortality Rates in Cancer Patients: A Meta-Analysis // Nutr. Cancer. 2015. V.67, N.B. P. 1230–1238.
- Staffas A. et al. The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease // Blood. 2017. V.129, N8. P. 927–933.
- 32. Sucak G.T. et al. The role of body mass index and other body composition parameters in early post-transplant complications in patients undergoing allogeneic stem cell transplantation with busulfan-cyclophosphamide conditioning // Int. J. Hematol. 2012. V.95, N 1. P. 95–101.
- Trifilio S. et al. Questioning the Role of a Neutropenic Diet following Hematopoetic Stem Cell Transplantation // Biol. Blood Marrow Transplant. Elsevier Inc., 2012. V.18, N9. P. 1385–1390.
- Ullmann A. J. et al. ESCMID guideline for the diagnosis and management of Candida diseases 2012: Adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT) // Clin. Microbiol. Infect. 2012. V.18, N. SIIPPL.7. P. 53-67.
- Wiskemann J. et al. Effects of physical exercise on survival after allogeneic stem cell transplantation // Int. J. Cancer. 2015. V.137, N11. P. 2749–2756.
- Zama D. et al. Gut microbiota and hematopoietic stem cell transplantation: Where do we stand? // Bone Marrow Transplant. Nature Publishing Group, 2017. V.52, N1. P. 7–14.

Для цитирования. Черкасова Е. В., Семиглазова Т. Ю., Филатова Л. В., Загоруйко В. А. Влияние нутриционной поддержки на развитие и исход инфекционных осложнений неходжкинских лимфом после трансплантации гемопоэтических стволовых клеток // Медицинский алфавит. Серия «Диагностика и онкотерапия».— 2019.— Т. 3.— 28 (403).— С. 40–46.

Вакцинопрофилактика папилломавирусной инфекции у женщин значительно снижает уровень заражения мужчин вирусом папилломы человека

Таким выводам пришли специалисты онкологического центра Андерсона в Хьюстоне (США), изучив данные распространенности вируса папилломы человека (ВПЧ) с 2009 по 2016 год среди мужчин в возрасте 18–59 лет.

У мужчин на 37% снизилась распространенность наиболее онкогенных типов ВПЧ — 16-го и 18-го, а также 6-го и 11-го, приводящих к аногенитальным бородавкам. Ученые связывают это с эффектом так называемого коллективного иммунитета, который формируется у мужчин благодаря росту охвата вакцинацией против ВПЧ среди женщин.

ВПЧ опасен развитием онкологических заболеваний репродуктивных органов у мужчин и женщин, рака анального канала и ротоглотки. Восемьдесят процентов сексуально активного населения инфицируются вирусом в течение жизни.

Эффективным и безопасным способом защиты от ВПЧассоциированных заболеваний является вакцинация. В мире вакцинация против ВПЧ проводится с 2006 года, на сегодняшний день она включена в национальные календари профилактических прививок 96 стран. С 2011 года в США вакцинация также рекомендована и мальчикам. Вакцинация против ВПЧ наиболее эффективна, если проводится среди подростков до первой встречи с вирусом (до начала половой жизни), то есть в возрасте 12–13 лет.

Андрей Поляков, д.м.н., заведующий отделением микрохирургии МНИОИ им. П.А. Герцена — филиала НМИЦ радиологии Минздрава России прокомментировал новость: «У мужчин ВПЧ может вызвать рак ротоглотки, рак полового члена, головы и шеи. Рак ротоглотки — серьезная проблема для нашей страны. Это заболевание инвалидизирует молодое поколение, репродуктивное и работоспособное население. К 2030 году он может выйти на первые позиции по заболеваемости. В России у 70% больных рак ротоглотки диагностируется на поздних стадиях (III и IV). К сожалению, у нас пока нет реальных скрининговых технологий для предотвращения этого рака. Поэтому единственная надежда онкологов — это эффективная вакцинопрофилактика против причины — ВПЧ. При этом вакцинировать против ВПЧ нужно не только девочекподростков, но и мальчиков. У мужчин в целом иммунный ответ на инфекцию ниже, и не сохраняется длительная естественная иммунизация после заражения. Мужчины чаще повторно заражаются. Включение в национальные программы вакцинации мальчиков и мужчин имеет благотворное влияние и на снижение число случаев заболеваемости у женщин в связи с природой распространения вируса. Как показывает опыт других стран, гендерно-нейтральный подход (вакцинация и женщин, и мужчин) позволяет избежать массового распространения вируса и связанных с ним ВПЧ-ассоциированных онкологических заболеваний. В России вакцинация против ВПЧ пока проводится только в рамках региональных программ вакцинации, не входит в национальный календарь профилактических прививок и не покрывает все целевые группы подростков по всей стране».

e-mail: medalfavit@mail.ru